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1 I N T R O D U C T I O N

In this chapter, we first present the background of the thesis on the path-
following (navigation) problem. Then we detail the research challenges this
thesis deals with and our contributions addressing these challenges. Finally,
the thesis outline is illustrated.

1.1 background

1.1.1 Path-following navigation

Several robot navigation tasks, such as highway traffic monitoring, underwater
pipeline inspection and border patrolling (see Fig. 1.1), require the fundamental
functionality of mobile robots to follow a desired path [130], and new applications
are emerging, such as using drones to probe atmospheric phenomena along
prescribed paths [71]. The path-following (navigation) problem is a classic problem,
and has attracted the attention from both the robotics community [32], [50],
[81], [89], [119] and the control community [15], [21], [64], [72], [90], [156]. In
a path-following algorithm, the desired path is usually given in the form of a
single connected curve without temporal information, and then robots are guided
to converge to and move along it with sufficient accuracy. In [5], it is shown
that, treating the desired path as a geometric object rather than a time-dependent
point, path-following algorithms sometimes are able to overcome a number of
performance limitations rooted in trajectory tracking, such as inaccuracy due to
unstable zero dynamics [126] and difficulty to maintain constant tracking speed
[63]. In fact, it is claimed in [5] that path-following algorithms enable robots to
accurately follow a path with a constant speed or fixed orientation. Moreover,
comparing with trajectory tracking algorithms, there is separate interest for
the study of path-following algorithms since they are more suitable for some
applications, such as fixed-wing aircraft guidance and control [74], [119], [137].

To our knowledge, most of path-following algorithms work on the kinematics
level of a robot model; namely, path-following algorithms usually give guidance
signals such as desired linear velocities vd or desired angular velocities ωd to
guide a robot such that a desired path can be followed eventually. This high-
level of kinematics control enables a specific path-following control algorithm
to be applicable to a wide range of robots which can be described by the same
kinematics model but might correspond to drastically different dynamics models.

1
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(a) (b) (c)

Figure 1.1: (a) UAV highway traffic monitoring [105]. (b) Snake robots underwater pipeline
inspection [1]. (c) A robot employed for border patrolling [2].

Figure 1.2: The common control structure.

Depending on these different dynamics models, the low-level dynamics control
involving, e.g., computing the corresponding forces Fd or moments Md, is usually
accomplished by open-source or commercially available controllers (e.g., autopi-
lots for UAVs), possibly using classic control methods such as PID control or
model predictive control. To be more specific, in practice, a widely used control
structure of robots are shown in Fig. 1.2, which can be roughly divided into
an inner loop and an outer loop. In the inner loop, the robot dynamics model
is considered and a dynamics controller takes the desired linear velocities vd,
the desired angular velocities ωd and the robot states as inputs and computes
the corresponding forces Fd or moments Md using the dynamics model. If this
inner loop control is fast and accurate, then the two components enclosed by the
dashed rectangle in the figure can be seen as a robot kinematics model. Therefore,
in the outer loop, a kinematics controller takes the robot states as input and
computes the desired linear velocities vd and the desired angular velocities ωd.
Many path-following algorithms, including those that are studied in this thesis,
act as the kinematics controller.

There are many existing path-following algorithms, many of which have been
surveyed in [137] and [121]. In [137], path-following algorithms are generally
classified into two categories: geometric algorithms and control theoretic algo-
rithms. Geometric algorithms include pure pursuit [29], Line-of-sight (LOS) [40],
[122], Vector-Field Guided Path-Following (VF-PF) algorithms [50], [63], [104],
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etc. Control theoretic algorithms include Nonlinear Guidance Law (NLGL) [111],
Linear Quadratic Regulator (LQR) [79], sliding mode control [104], backstepping
control [80] algorithms, etc.

Among different path-following algorithms, VF-PF algorithms have been studied
widely [50], [64], [72], [89], [90], [119]. The guidance feature of the guiding vector
fields is justified as follows: usually robot kinematics models (e.g., single-integrator
and double-integrator models [50], [74]) are considered, and the guiding vector
fields, as their names suggest, provide guidance signals to the models. This is
valid based on the aforementioned assumption that the robot-specific inner-loop
dynamics control can track these guidance signal inputs effectively [63], [113], [121].
Thus, one can simply focus on the guidance layer (i.e., designing a guiding vector
field), and consider other control layers separately. Specifically, the guiding vector
field is designed such that its integral curves are guaranteed to converge to a
predefined geometric desired path. Utilizing the convergence property of the
vector field, one can then derive suitable control laws. It is reported in [137] that
VF-PF algorithms demonstrate the lowest cross-track error while they require the
least control effort among several other path-following algorithms. In addition,
[22] shows that VF-PF algorithms achieve better path-following accuracy than the
integral line-of-sight (ILOS) method [15].

1.1.2 An example of a 2D guiding vector field

To understand what a guiding vector field is, we introduce the 2D guiding vector
field in [63] as a simple example. To derive the guiding vector field, first we
suppose that the desired path P is described by the zero-level set of an implicit
function:

P = {(x, y) ∈ R2 : φ(x, y) = 0}, (1.1)

where φ : R2 → R is twice continuously differentiable. In this setting, P
is a subset of R2. The description is different from some other works where
the desired path is a parameterized differentiable curve (e.g., [5]); that is, a
differentiable map f : I → Rn of an open interval I = (a, b) of the real line R into
Rn [35]. From the definition, one observes that the mathematical object in (1.1)
is actually the trace of a parameterized curve f [35], or the image of a mapping
f . Note that this description of the desired path without any parametrization is
common in the VF-PF navigation problem [24], [28], [36], [50], [89], [98], [119], [156],
[157], which will be formally defined later. One of the advantages is that the vector
field can be derived directly from the function φ(·), independent of the specific
parametrization of the desired path. Another advantage is that one can replace
the calculation of the Euclidean distance1 dist(ξ,P) := inf{‖ξ − p‖ : p ∈ P}
between a point ξ ∈ R2 and the desired path P simply by the value of |φ(ξ)|

1 This calculation is generally difficult since one needs to find the closest point on the desired path to ξ;
e.g., it is not trivial for even an ellipse.
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under some assumptions to be explained in later chapters. For simplicity, rather
than referring to P in (1.1) as “the trace of a parameterized curve”, we call P
the desired path throughout the thesis. In fact, one feature of the VF-PF navigation
problem is that the desired path P is a one-dimensional connected submanifold, so
we have the extra freedom of choosing different analytic expressions (i.e., φ) for
the same desired path.

If the desired path is non-self-intersecting, then a valid 2D guiding vector field
χ : R2 → R2 to solve the VF-PF navigation problem is [63]:

χ(x, y) = E∇φ(x, y)− kψ
(
φ(x, y)

)
∇φ(x, y), (1.2)

where E ∈ SO(2) is the 90◦ rotation matrix2
[ 0 −1

1 0

]
, and ψ : R → R is a

strictly increasing function satisfying ψ(0) = 0. For simplicity, one can choose
ψ
(
φ(x, y)

)
= φ(x, y). The first term of the vector field is “tangential” to the

desired path, thus enables a robot to propagate/traverse/move along the desired
path, while the second term of the vector field is perpendicular to the first term,
helping the robot move closer to the desired path. Therefore, intuitively, the
vector field guides the robot to move along and towards the desired path at the
same time. For simplicity, we call the first term the propagation term, and the
second term the convergence term. A singular point p ∈ R2 of the vector field χ

is the point where the vector field becomes zero (i.e., χ(p) = 0). The set of all
singular points is called the singular set of the vector field. Recall that an integral
curve of the vector field is a trajectory of the following autonomous system:

ξ̇(t) = χ(ξ(t)), (1.3)

given some initial condition ξ(t = 0) = ξ0, where ξ̇(t) denotes the time derivative
of ξ(t).

1.1.3 Vector-field guided path-following (VF-PF) navigation problem on gen-
eral spaces

In this thesis, we will mainly study the properties of a guiding vector field defined
on an n-dimensional general smooth Riemannian manifoldM (in particular, on
an n-dimensional Euclidean space for n ≥ 3), by investigating the integral curves
of the guiding vector field. Therefore, we can unify the definition of the VF-PF

navigation problem by considering the smooth Riemannian manifoldM. Before
we formally present the definition, we first need to define the desired path onM
as a counterpart of (1.1):

P = {ξ ∈ M : φi(ξ) = 0, i = 1, . . . , n− 1}, (1.4)

2 In fact, the matrix is −E in [63], but we use E for conventional simplicity. This only affects the
direction of the motion (forward or backward) on the desired path.



1.1 background 5

where φi :M→ R are twice continuously differentiable functions. Assumptions
will be introduced in Chapter 5 to make sure that (1.4) defines a “practical”
desired path (e.g., it is nonempty and connected). Therefore, the VF-PF navigation
problem onM, where recall thatM can be Euclidean spaces, is formally defined
below

Problem 1.1 (VF-PF navigation problem on M). Given a desired path P ⊆ M
defined in (1.4), the VF-PF navigation problem is to design a continuously differ-
entiable vector field χ :M→ TM, where TM denotes the tangent bundle ofM,
for the differential equation ξ̇(t) = χ

(
ξ(t)

)
such that the two conditions below

are satisfied:
1) There exists a neighborhood D ⊆ M of the desired path P such that

for all initial conditions ξ(0) ∈ D, the distance dist(ξ(t),P) between the tra-
jectory ξ(t) and the desired path P approaches zero as time t → ∞; that is,
limt→∞ dist(ξ(t),P) = 0;

2) If a trajectory starts from the desired path, then the trajectory stays on the
desired path for t ≥ 0 (i.e., ξ(0) ∈ P =⇒ ξ(t) ∈ P for all t ≥ 0). In addition, the
vector field on the desired path is non-zero (i.e., 0 /∈ χ(P)).

We will study guiding vector fields and the autonomous system (1.3), where
the right-hand-side is a guiding vector field defined onM, throughout the thesis.

1.1.4 Review of guiding vector fields in the literature

In this thesis, we focus on VF-PF algorithms for the path-following control problem.
The essential differences among different VF-PF algorithms are the guiding vector
fields. In this subsection, we review some of the guiding vector fields in the
literature and point out the major differences among them and those studied in
this thesis.

• ([89]) If the desired path in R2 is defined by (1.1), then the guiding vector
field χ : R2 → R2 is

χ(ξ) = vd
R∇φ(ξ)

‖∇φ(ξ)‖ − kpφ(ξ)
∇φ(ξ)

‖∇φ(ξ)‖ (1.5)

for ξ ∈ R2, where R =
[ 0 1
−1 0

]
, vd > 0 and kp > 0 are constants. The major

difference from (1.2) is the state-dependent scaling coefficient 1/‖∇φ(ξ)‖.

• ([81]) If the desired path in R2 is defined by (1.1), then the guiding vector
field χ : R2 → R2 is

χ(ξ) = sVgsech(κφ(ξ))
R∇φ(ξ)

‖∇φ(ξ)‖ −Vg tanh(κφ(ξ))
∇φ(ξ)

‖∇φ(ξ)‖ (1.6)



6 introduction

for ξ ∈ R2, where R =
[ 0 1
−1 0

]
, κ > 0, Vg > 0 are constants, and s =

±1, which determines the direction of following the desired path. The
major differences from (1.2) are the state-dependent scaling coefficients
sech(κφ(ξ))/‖∇φ(ξ)‖ and tanh(κφ(ξ))/‖∇φ(ξ)‖.
If the desired path in R3 is defined by (1.4), where M = R3, then the
guiding vector field χ : R3 → R3 is

χ(ξ) = sVgsech(κr(ξ))
∇φ1(ξ)×∇φ2(ξ)

‖∑2
i=1 φi(ξ)∇φi(ξ)‖

−Vg tanh(κr(ξ)) ∑2
i=1 φi(ξ)∇φi(ξ)

‖∑2
i=1 φi(ξ)∇φi(ξ)‖

(1.7)

for ξ ∈ R3, where r(ξ) = ‖(φ1(ξ), φ2(ξ))‖. Similarly, the major dif-
ferences from the 3D counterpart of (1.2), which will be studied in
detail later in Chapter 4, are the state-dependent scaling coefficients
sech(κr(ξ))/‖∑2

i=1 φi(ξ)∇φi(ξ)‖ and tanh(κr(ξ))/‖∑2
i=1 φi(ξ)∇φi(ξ)‖.

• ([72]) If the desired path in R3 is defined by (1.4), whereM = R3, then the
guiding vector field χ : R3 → R3 is:

χ(ξ) = usσ
∇φ1(ξ)×∇φ2(ξ)

‖∇φ1(ξ)‖‖∇φ2(ξ)‖
− kp

(
φ1(ξ)

∇φ1(ξ)

‖∇φ1(ξ)‖
+ φ2(ξ)

∇φ2(ξ)

‖∇φ2(ξ)‖

)
for ξ ∈ R3, where σ determines the direction of movement along the
desired path and us ∈ R, kp > 0 are constants. The major differences from
the 3D counterpart of (1.2), which will be studied in detail later in Chapter
4, are the state-dependent scaling coefficients 1/‖∇φi(ξ)‖, i = 1, 2, and
1/(‖∇φ1(ξ)‖‖∇φ2(ξ)‖).

• ([50]) If the desired path is defined by (1.4), where M = Rn, then the
guiding vector field χ : Rn → Rn is:

χ(ξ) = H(t, ξ) ∧n−1
i=1 ∇φi(ξ)− G(t, ξ)∇V(φ1(ξ), . . . , φn−1(ξ)) + ρ(t, ξ)

(1.8)
for ξ ∈ Rn, where V : Rn−1 → R is a differentiable positive-definite
function (i.e., V = 0 if and only if φi = 0 for all i = 1, . . . , n − 1), G :
R ×Rn → R≥0 is a non-negative function which only becomes zero at
points where ∇V = 0, H : R ×Rn → R≥0 is a continuous function which
is strictly positive or negative on P , and ∧ is the wedge product. If the
desired path is static (i.e., independent of time t), then ρ(·) = 0; otherwise,
ρ : R ×Rn → Rn is a term to guarantee the convergence to the moving
desired path (i.e., P is dependent on time t). The guiding vector field
defined in [74] is similar.
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The major differences from the Rn counterpart of (1.2), which will be studied
in detail later in Chapter 9, are the state-dependent scaling functions G(·),
H(·), and the time-varying terms. If the desired path is independent of
time t (hence ρ(·) = 0), and let G(·) = H(·) = 1, V = 1/2 ∑n−1

i=1 φ2
i , then

(1.8) is of the same form as (9.2) in Chapter 9.

1.1.5 Guiding vector fields studied in this thesis

In this thesis, we specifically study guiding vector fields of the same structure
as that in (1.2); namely, each of them consists of a propagation term and a
convergence term. More specifically, the counterpart of (1.2) defined on R3 is
studied in Chapter 4 (i.e., (4.2)); the one defined on Rn is studied in Chapter 9

(i.e., (9.2)) and the one defined on an n-dimensional smooth Riemannian manifold
is studied in Chapter 5 (i.e., (5.6)) and Chapter 6 (i.e., (6.3)). Here, we emphasize
the significance of studying these guiding vector fields.

Firstly, different from many existing studies which restrict consideration to
simple desired paths such as a circle or a straight line (or a combination of them)
[21], [104], [137], the guiding vector fields studied in this thesis are designed
for any general sufficiently smooth desired path in the form of (1.4). Secondly,
many guiding vector fields in the literature are essentially variants of guiding
vector fields in this thesis. For example, as discussed in Section 1.1.4, some
variants are obtained by adding φi-dependent gains to the convergence terms or
(and) the propagation terms [63], [81], [89], and some by adding time-varying
gains or an additional time-varying component [50], [74]. Thus, the guiding
vector fields in [63], [81], [89], [162] can be regarded as 2D specializations of the
guiding vector fields studied in this thesis (e.g., (5.3)), and those in [65], [72],
[81], [156], [157] as 3D specializations of the guiding vector fields studied in
this thesis (e.g., (5.3)). In some cases, the φi-dependent gains to the convergence
terms or (and) the propagation terms would not change the phase portraits [25,
Proposition 1.14], and thus the convergence properties of the guiding vector
fields remain unchanged. Therefore, the study of the guiding vector fields in this
thesis (e.g., (5.3) and (5.6)) is of great significance. In addition, to clearly observe
the topological properties of the guiding vector fields, we do not consider time-
varying components, and thus we focus on the autonomous differential equation
(1.3).

1.1.6 Comparison with potential energy shaping for path planning

The guiding vector field approach has one major component in common with
the potential energy shaping approach for path planning (e.g., [68], [120]); that is,
they all use (feedback) vector fields for path following or motion planning. In
addition, similar to the potential energy shaping approach, the guiding vector
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field can be used for control algorithm design for both the purely kinematic,
first-order integrator, and the dynamic, second-order integrator [50].

However, there are also major differences listed as follows:

1. (Problem formulations) The potential energy shaping approach aims to
plan a path between two given points (in the presence of obstacles), while
in the path-following problem, one does not aim to find such a path and
there are no given two points either. More specifically, in the path following
formulation, a geometric desired path is given, and one aims to design a
vector field such that the integral curves converge to and traverse along
the path. One also does not restrict consideration to a compact workspace,
while those works in [68], [120] only consider a compact workspace (i.e., a
sphere world).

2. (Vector fields) Guiding vector fields are usually not the gradients of any
potential functions, while the potential energy shaping approach relies on
designing a potential/navigation function, and the corresponding vector
field is the (negative) gradient of the potential/navigation function.

3. (Topological results) We prove a general result showing a common limitation
of combining two vector fields (see Lemma 8.20). This result gives a
theoretical explanation of the common phenomenon that singular points
exist when two vector fields are blended. The result may be regarded as a
counterpart of the well-known limitation of motion-planning algorithms
based on the negative gradient of a potential/navigation function [68], [120],
both issues being fundamentally topological. However, in our case, the
limitation can sometimes be removed, and thereby, global convergence of
trajectories to the desired path with the collision-avoidance guarantee is
possible (see Remark 8.21).

1.2 research challenges and contributions
Equilibrium points are usually the central subject of study in the systems and
control field. However, in this thesis, since the desired path is not a singleton, we
aim to let trajectories of (1.3), where the right-hand side can be guiding vector
fields on high dimensional spaces, converge to a closed invariant set (i.e., the
desired path). The difficulty of the analysis of guiding vector fields arises due to
two facts. First, the guiding vector fields are nonlinear and not the gradient of
any potential functions. Second, there are usually singular points in the vector
field, where the vector field vanishes. We recognize these challenges and make
the first contribution as stated below, which is detailed in Chapters 3, 4, and 7.
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Contribution I

We derive new theoretical results (e.g., the refined dichotomy convergence
property, the exponential convergence of path-following errors, the input-
to-state stability of path-following error dynamics) for guiding vector fields
on Rn, where n ≥ 2.

Moreover, most, if not all, of the existing literature only studies the guiding
vector fields on Euclidean spaces, while the generalization to a smooth manifold
has not been investigated thoroughly. Our second contribution is to generalize
guiding vector fields to a smooth Riemannian manifold, and provide theoretical
results including the topological analysis. The contribution is elaborated in
Chapters 5 and 6.

Contribution II

We generalize guiding vector fields to a general smooth Riemannian mani-
fold, and derive new theoretical results including the dichotomy conver-
gence result and the stability of the desired path. In particular, we derive
some topological results regarding the existence of singular points and
trajectories not converging to the desired path. In addition, we characterize
the domain of attraction of the desired path.

We have shown that on Euclidean spaces, the guiding vector field correspond-
ing to a compact desired path (precisely, homeomorphic to the unit circle S1)
cannot have global convergence of trajectories of (1.3) to the desired path. How-
ever, in practical applications, this global convergence property is desirable. Yet, it
is challenging, if not impossible, to remove this topological obstruction to global
convergence. In addition, the traditional guiding vector field is not applicable to
a self-intersecting desired path since the self-intersecting point is itself a singular
point of the vector field. It is unclear how to remove this limitation in the existing
literature. It is our third contribution to resolve these problems, which is detailed
in Chapter 9.

Contribution III

We propose an approach to generate singularity-free higher-dimensional
guiding vector fields on Euclidean spaces such that the topological obstruc-
tion of global convergence of trajectories to the desired path is removed,
and thereby it becomes possible to follow self-intersecting desired paths.

Most of the VF-PF algorithms have been designed for one single robot, but it was
unclear how to extend these algorithms for a multi-robot system to accomplish
some coordination tasks. In addition, when considering obstacle avoidance,
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many existing algorithms cannot provide mathematical guarantees. As the fourth
contribution, we have successfully achieved the extension of guiding vector fields
for multi-robot systems, and derive a variation of the guiding vector field to
rigorously guarantee both path-following and obstacle-avoidance capabilities.
This contribution is reported in Chapters 8 and 10.

Contribution IV

We extend guiding vector fields having been designed for a single robot to
those for a multi-robot system to achieve distributed coordinated motion
control. In addition, we extend guiding vector fields such that path-
following and obstacle-avoidance behaviors are achieved simultaneously
with mathematical guarantees.

1.3 thesis outline
The remainder of the thesis is structured as follows, and the relationships among
different chapters are illustrated in Fig. 1.3.

In Chapter 2, preliminaries on nonlinear systems and control, point-set topol-
ogy, topological and differentiable manifolds are briefly introduced. These
preliminary results underpin the subsequent theoretical findings in the thesis.

After Chapter 2, the thesis is divided into two parts. Part I establishes the
theoretical foundation of vector-field guided path-following (VF-PF) algorithms,
and it consists of Chapters 3 to 7. Part II extends Part I, and presents variations
of the guiding vector fields and their applications in following occluded desired
paths, global robot navigation and multi-robot coordinated maneuvering. This
part consists of Chapters 8 to 10 (see the two shaded areas in Fig. 1.3).

Chapter 3 studies the relationship between level values and level sets. The
zero level set of a specific smooth function, called level function, is usually the
central object of study (e.g., the zero level set of a Lyapunov function is usually
the singleton containing an equilibrium of a dynamical system). Therefore, we
investigate the question whether the convergence of the value of the level function,
called the level value, to zero along a trajectory implies the convergence of the
trajectory to the zero level set. This is not generally true, but some conditions or
assumptions are identified in the chapter to make this implication hold. These
conditions or assumptions are then used throughout the rest of the thesis (see
the arrows starting from Ch. 3 in Fig. 1.3). This chapter is based on our work in
[160].

In Chapter 4, we study the properties of a general 3D guiding vector field for
path following, which is an extension of the 2D guiding vector field in Section
1.1.2. We derive conditions under which the path-following error converges
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Figure 1.3: The structure of the thesis and relationships among chapters.

exponentially to zero in the vicinity of the desired path, and show the local input-
to-state stability (ISS) property of the path-following error dynamics. Thanks
to this ISS property, we propose a control algorithm design principle for robot
models of which the motions are determined by their headings. This chapter is
the basis for the design of higher-dimensional guiding vector fields, for which
some of the results in the chapter can be generalized straightforwardly. The
control algorithm design principle is adopted in Chapters 8, 9 and 10 (see the
arrows starting from Ch. 4 in Fig. 1.3). This chapter is based on our work in [157]
and [156].

Chapter 5 focuses on the analysis of vector-field guided path-following algo-
rithms from a topological perspective. Based on Chapter 4, we derive guiding
vector fields on n-dimensional Euclidean spaces Rn and n-dimensional smooth
Riemannian manifolds M. In this chapter, we only take into account desired
paths that are homeomorphic to the unit circle S1. For the guiding vector field on
Riemannian manifolds, we show the dichotomy convergence result, the asymp-
totic stability of the desired path and the non-attractiveness of the singular set
under some conditions. Then we conclude that the domain of attraction of the
desired path is homotopy equivalent to S1. This further leads to results about
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the existence of singular points and the impossibility of global convergence in
the Euclidean spaces. Furthermore, we also demonstrate a topological result
regarding the existence of trajectories not converging to the desired path. The
results of the chapter are the main motivations for Chapter 9, which aims to
remove the topological obstruction to global convergence to the desired path (see
the arrow starting from Ch. 5 to Ch. 9). This Chapter is based on our work in
[161].

Chapter 6 is an extension of Chapter 5 (see the arrow starting from Ch. 5

to Ch. 6 in Fig. 1.3); it further characterizes the domain of attraction of the
desired path, which is generally a compact asymptotically stable regular level set
in a finite-dimensional Riemannian manifoldM. The central result is that the
domain of attraction of the desired path is homeomorphic to Rn−1 × S1, where n
is the dimension of the ambient manifoldM. As in Chapter 5, the results of this
chapter motivate the studies in Chapter 9 (see the arrow starting from Ch. 6 to
Ch. 9 in Fig. 1.3). This chapter is based on our work in [158].

In Chapter 7, we consider guiding vector fields on Euclidean spaces Rn for
n ≥ 2 (illustrated by an arrow from Ch. 6, which inherits from Ch. 4 and Ch. 5,
to Ch. 7 in Fig. 1.3), and refine the dichotomy convergence result. Specifically,
we provide conditions under which a trajectory converging to the singular set
implies that it converges to a single point of the set. This refined conclusion is
used in Chapter 8 (see the arrow starting from Ch. 7 to Ch. 8 in Fig. 1.3). This
chapter is based on our work in [160].

Chapter 8 considers the practical scenario where a planar desired path is partly
occupied by a finite number of static and moving obstacles of arbitrary shapes.
In this case, it is no longer possible to persistently follow the desired path, and
temporarily deviating from the desired path to avoid collision with obstacles is
crucial. To address this problem, we propose to use smooth bump functions to
integrate two guiding vector fields while the negative effect due to the integration
is mitigated. Technical conditions are derived to guarantee the effective path-
following and obstacle-avoidance behavior simultaneously. We also propose a
switching mechanism to avoid possible deadlocks, and discuss several extensions,
including obstacle-avoidance in higher-dimensional spaces, nonholonomic robot
models and moving obstacles. The results in this chapter can be adopted in
Chapter 10 to avoid collisions among robots (see the arrow starting from Ch. 8 to
Ch. 10 in Fig. 1.3). This chapter is based on our work in [162] and [159].

Due to the topological obstruction of global convergence of trajectories to
the desired path in Euclidean spaces as shown in Chapters 5 and 6, Chapter
9 investigates how to remove this topological obstruction. Using parametric
equations of desired paths, we propose an approach to change the topology of the
desired paths and extend the dimensions of the space that the desired paths live in.
Thanks to this approach, we can guarantee the global convergence of trajectories to
desired paths that are homeomorphic to the unit circle S1 or are self-intersecting,
which was initially not possible. We also discuss the differences between our
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proposed vector-field guided path-following algorithm and a traditional trajectory
tracking algorithm, along with the practical implementation of the proposed
algorithm on a fixed-wing aircraft. This chapter is based on our work in [164]
and [165].

The previous chapters all deal with the single-robot path-following problem,
while the last chapter, Chapter 10, further extends the guiding vector field to
enable multiple robots to follow possibly different desired paths in a distributed
and coordinated way. The new guiding vector field proposed in this chapter
utilizes the additional dimension of the guiding vector field proposed in Chapter
9 to reach consensus on a virtual coordinate, and thus coordinated motions (i.e.,
robots maintaining desired parametric distances while maneuvering) is achieved;
see the arrow starting from Ch. 9 to Ch. 10 in Fig. 1.3. We also extend the path-
following algorithm to enable coordinated maneuvering on two-dimensional
surfaces. This chapter is based on our work in [166] and [167].

Chapter 11 concludes the thesis and provides recommendations for future
research.
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1.5 general notations
In this section we define notations that are used throughout the thesis, while
notations specific to chapters are defined within the chapters themselves.

The set of natural numbers (including 0), integers and real numbers are denoted
by N, Z and R, respectively. We use R≥0 to denote the non-negative real numbers.
The notation “:=” means “defined to be”. If A ( B, then A is a proper subset
of B. If A ⊆ B, then A is a (proper or non-proper) subset of B. The notations
A \ B or A− B denote the set of elements which belong to A but not B; i.e.,
A \ B = A−B := {x ∈ A : x /∈ B}.

Given a positive integer n, if a mapping f : R → Rn is a differentiable
function in time t, then ḟ (t) denotes the function’s derivative with respect to t.
Suppose there is a function ρ : C → D, where the sets C and D are nonempty.
The image of a subset F ⊆ C under ρ is the subset ρ(F ) ⊆ D defined by
ρ(F ) := {ρ(x) ∈ D : x ∈ F}. Given two functions f : X → Y, g : Y → Z, the
composition of these two functions is denoted by g ◦ f : X → Z. A function is
said to be of class Cr, r ≥ 1, if it is r times differentiable, and its r-th derivative is
continuous. A function is of class C0 if it is continuous, and C∞ if it is smooth
(i.e., infinitely differentiable).

Suppose (X , d) is a metric space with a metric d and A is a subset in X . The
distance between a point p ∈ X and the set A is dist(A, p) = dist(p,A) :=
inf{d(p, q) : q ∈ A}, and if A = ∅, then dist(p,A) = inf{∅} = +∞. The
distance between two subsets A,B ⊆ X is dist(B,A) = dist(A,B) = inf{d(a, b) :
a ∈ A, b ∈ B}. If we consider the n-dimensional Euclidean space X = Rn,
then we use the Euclidean metric by default unless otherwise mentioned3; i.e.,
dist(p,A) = inf{dl2(p, q) : q ∈ A}, where dl2(p, q) = ‖p − q‖ and ‖ · ‖ is the
Euclidean norm.

If M is a matrix, ‖M‖ denotes the induced matrix two-norm of M. The
transpose of a vector or a matrix v is denoted by v>. The determinant of a matrix
M is denoted by det(M) or det M.

3 Other metrics in Rn include but not limit to the taxi-cab metric and the sup norm metric [140,
Examples 1.1.7, 1.1.9].





2 P R E L I M I N A R I E S

This chapter provides preliminaries for subsequent theoretical derivation.

2.1 nonlinear systems and control
For a comprehensive introduction to nonlinear systems and control theory, see
[66], [107], [124], [142], [149]. In what follows, we select some results from [66]
that will be used in subsequent chapters.

2.1.1 Existence and uniqueness of system trajectories

Consider the following initial-value problem

ẋ(t) = f (t, x(t)), x(t0) = x0 (2.1)

where t0 is the initial time instant, x ∈ Rn for some positive integer n, and
f : Rn → Rn is a function. The first question to ask is the existence and
uniqueness of solutions to (2.1) (i.e., trajectories of (2.1)). This is stated in the
following theorem.

Theorem 2.1 (Local existence and uniqueness, [66, Theorem 3.1]). If f (t, x) in
(2.1) is piecewise continuous in t and satisfies the Lipschitz condition

‖ f (t, x)− f (t, y)‖ ≤ L‖x− y‖ (2.2)

for all x, y ∈ B := {x ∈ Rn : ‖x− x0‖ ≤ r}, and for all t ∈ [t0, t1], then there exists
some δ > 0 such that (2.1) has a unique solution over [t0, t0 + δ].

If f (t, x) satisfies (2.2) locally (i.e., for all x, y in a ball B), then it is said to be
locally Lipschitz in x.

Theorem 2.2 (Global existence and uniqueness, [66, Theorem 3.2]). If f (t, x) in
(2.1) is piecewise continuous in t and satisfies the Lipschitz condition

‖ f (t, x)− f (t, y)‖ ≤ L‖x− y‖

for all x, y ∈ Rn, and for all t ∈ [t0, t1], then (2.1) has a unique solution over [t0, t1].
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Note that for a nonlinear system, a trajectory may not be well defined on
t ∈ [t0, ∞); namely, it cannot be prolonged to infinity. The following theorem
gives a sufficient condition under which the trajectory of (2.1) is well-defined on
t ∈ [t0, ∞).

Theorem 2.3 ([66, Theorem 3.3]). Let f (t, x) in (2.1) be piecewise continuous in t and
locally Lipschitz in x for all t > t0 and all x in a domain D ⊆ Rn. LetW be a compact
subset of D, x0 ∈ W , and suppose every solution of (2.1) lies entirely inW . Then there
is a unique solution defined for all t > t0.

2.1.2 Lyapunov stability

We review some definitions and theorems on Lyapunov stability. In particular,
we restrict our attention to the following autonomous system

ẋ(t) = f (x(t)), (2.3)

where f : D ⊆ Rn → Rn is a locally Lipschitz function. This guarantees the
existence and uniqueness of the trajectory of (2.3) given an initial condition x(t0).
Suppose, without loss of generality, that 0 is an equilibrium point of (2.3); that is,
f (0) = 0, and the initial time instant t0 = 0.

Definition 2.4 ([66, Definition 4.1]). The equilibrium point x = 0 of (2.3) is

1. stable if ∀ε > 0, ∃δ(ε) > 0 such that ‖x(0)‖ < δ(ε) =⇒ ‖x(t)‖ < ε, ∀t ≥ 0.

2. unstable if it is not stable.

3. asymptotically stable if it is stable and δ can be chosen such that ‖x(0)‖ <
δ =⇒ limt→∞ x(t) = 0.

Now we present below one of the celebrated Lyapunov stability theorems.

Theorem 2.5 ([66, Theorem 4.1]). Suppose x = 0 is an equilibrium point for (2.3) and
D ⊆ Rn is a domain containing the equilibrium point. Let V : D → R be a continuously
differentiable function such that

V(0) = 0 and V(x) > 0 in D \ {0}

V̇(x) ≤ 0 in D
Then, x = 0 is stable. Moreover, if

V̇(x) < 0 in D \ {0}

then x = 0 is asymptotically stable.
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2.1.3 LaSalle’s invariance principle, Barbalat’s lemma and an invariance-like
theorem

A frequently used result is the LaSalle’s invariance principle for autonomous
systems. (2.3).

Theorem 2.6 ([66, Theorem 4.4]). Let Ω ⊆ D be a compact set that is positively
invariant with respect to (2.3). Let V : D → R be a continuously differentiable function
such that V̇ ≤ 0 in Ω. Define the set E := {x ∈ Ω : V̇(x) = 0}. Then every solution
starting in Ω approaches the largest invariant set L in E as t→ ∞.

The following lemma is known as Barbalat’s lemma, which is frequently
utilized in the literature to prove convergence of some error signals to zero. It
also lies at the core of the proof of Theorem 2.8.

Lemma 2.7 ([66, Lemma 8.2]). Let φ : R → R be a uniformly continuous function on
[0, ∞). If limt→∞

∫ t
0 φ(τ)dτ exists and is finite, then

φ(t)→ 0 as t→ ∞.

The following theorem is an invariance-like theorem for non-autonomous
systems. We consider the following general form of a non-autonomous system:

ẋ = f (t, x), (2.4)

where f (t, x) is piecewise continuous in t and locally Lipschitz in x, uniformly
in t, on [0, ∞)×D with D being a domain containing x = 0, and f (t, 0) = 0 for
t ≥ 0. Let Br := {x ∈ Rn : ‖x‖ ≤ r} for a positive constant r.

Theorem 2.8 ([66, Theorem 8.4]). Suppose f (t, 0) in (2.4) is uniformly bounded for
all t ≥ 0. Let V : [0, ∞)×D → R be a continuously differentiable function such that

W1(x) ≤ V(t, x) ≤W2(x)

V̇(t, x) =
∂V
∂t

+
∂V
∂x

f (t, x) ≤ −W(x)

∀t ≥ 0, ∀x ∈ D, where W1(x) and W2(x) are continuous positive definite functions
and W(x) is a continuous positive semidefinite function on D. Choose r > 0 such that
Br ⊆ D and let ρ < min‖x‖=r W1(x). Then, all solutions of (2.4) with x(t0) ∈ {x ∈
Br : W2(x) ≤ ρ} are bounded and satisfy

W(x(t))→ 0 as t→ ∞.

Moreover, if all the assumptions hold globally and W1(x) is radially unbounded, the
statement is true for all x(t0) ∈ Rn.
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2.1.4 Local input-to-state stability (ISS)

Consider the system
ẋ = f (t, x, u) (2.5)

where f : [0, ∞) × Rn × Rm → Rn is piecewise continuous in t and locally
Lipschitz in x and u. The input u(t) is a piecewise continuous, bounded function
of t for all t ≥ 0.

Definition 2.9 ([66, Definitions 4.2, 4.3]). A continuous function α : [0, a)→ [0, ∞)
is a class K function if it is strictly increasing and α(0) = 0. A continuous function
β : [0, a)× [0, ∞)→ [0, ∞) is a class KL function if, for each fixed s, the mapping
β(r, s) is a class K function with respect to r and, for each fixed r, the mapping
β(r, s) is decreasing with respect to s and β(r, s)→ 0 as s→ 0.

Definition 2.10 (local ISS). The system (2.5) is said to be locally ISS if there exists
a class KL function β, a class K function γ and positive constants k1 and k2
such that for initial state ‖x(t0)‖ < k1 and bounded input supt≥t0

‖u(t)‖ < k2,
the solution x(t) exists for all t ≥ t0 and satisfies ‖x(t)‖ ≤ β(‖x(t0)‖, t− t0) +

γ
(

supt0≤τ≤t ‖u(τ)‖
)

.

Lemma 2.11. Let V : [0, ∞)×Rn → R be a continuously differentiable function such
that

α1(‖x‖) ≤ V(t, x) ≤ α2(‖x‖) (2.6)
∂V
∂t

+
∂V
∂x

f (t, x, u) ≤ −W3(x), ∀‖x‖ ≥ ρ(‖u‖) > 0 (2.7)

∀(t, x, u) ∈ [0, ∞) × Br × Bru
1, where α1, α2 are class K functions, ρ is a class K

function, and W3(x) is a continuous positive definite function on Rn. Then, the system
(2.5) is locally ISS with γ = α−1

1 ◦ α2 ◦ ρ in Definition 2.10.

2.1.5 Nagumo’s theorem

This section explains the Nagumo’s theorem based on [13].

Definition 2.12 (Bouligand’s tangent cone, [13, Definition 4.6]). Given a closed
set S ⊆ Rn, the tangent cone to S at x ∈ Rn is defined as follows:

TS (x) =
{

z ∈ Rn : lim inf
τ→0

dist(x + τz,S)
τ

= 0
}

.

The tangent cone is nontrivial (i.e., non-identical to Rn) only on the boundary
of S .

1 Given a > 0, the (open) ball Ba ⊆ Rn is defined as Ba := {ξ ∈ Rn : ‖ξ‖ < a}.
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Theorem 2.13 (Nagumo’s theorem, [13, Corollary 4.8]). Consider the system (2.3)
and assume that for each initial condition x(0) in an open set O ⊆ Rn, it admits a
unique solution defined for all t ≥ 0. Let S ⊆ O be a closed set. Then, S is positively
invariant for the system if and only if the velocity vector f (x) satisfies the Nagumo’s
condition:

f (x) ∈ TS (x), for all x ∈ ∂S ,

where ∂S denotes the boundary of S .

The readers are recommended to read the clear explanation and intuitive
interpretation of the Bouligand’s tangent cone and the Nagumo’s theorem in [13,
pp. 102-103].

2.1.6 Poicaré-Bendixson theorem

This subsection is based on Chapter 9 of [149]. The Poicaré-Bendixson theorem
is a celebrated result since it completely determines the asymptotic behavior of
flows on the plane, cylinder, and two-sphere.

We consider Cr, r ≥ 1, vector fields

ẋ = f (x, y),

ẏ = g(x, y),
(2.8)

for ξ = (x, y) ∈ N , where N denotes the state space that can be the plane,
cylinder, or two-sphere. The flow φ : R ×R2 → R2 generated by (2.8) is denoted
by φ(t, ξ). Namely, for ξ ∈ R2, t 7→ φ(t, ξ) is the solution of (2.8) such that2

φ(0, ξ) = ξ.

Definition 2.14 ([149, Definition 8.1.1 and 8.1.2]). A point ξ0 ∈ Rn is called an ω
limit point of ξ ∈ Rn, denoted by ω(ξ), if there exists a sequence {ti}, ti → ∞,
such that φ(ti, ξ) → ξ0. An α limit point is defined analogously by taking a
sequence {ti} as ti → −∞. The set of all ω limit points of a flow or map is called
the ω limit set. The α limit set is defined analogously.

Theorem 2.15 ( [149, Theorem 9.0.6]). Let L be a positively invariant region for the
vector field in (2.8) containing a finite number of equilibrium points. Let p ∈ L, and
consider the ω limit set of p, denoted by ω(p). Then one of the following possibilities
holds.

1. ω(p) is an equilibrium point;

2. ω(p) is a closed orbit;

2 For simplicity, suppose that solutions of (2.8) exist for all time; namely, solutions are complete.
Then φ defines a one-parameter group expressed concisely as follows: φ(t + s, ξ) = φ(t, φ(s, ξ)) for
t ≥ 0, s ≥ 0. [25, Chapter 1.4].
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3. ω(p) consists of a finite number of equilibrium points p1, . . . , pn and orbits γ with
α(γ) = pi and ω(γ) = pj, where α(·) denotes the α limit set.

2.1.7 Index theorem

This subsection explains the index theorem based on [66].

Definition 2.16 (Poincaré index, [66, p. 68]). Consider the second-order au-
tonomous system (2.8). Let C be a simple closed curve not passing through any
equilibrium point of (2.8). Consider the orientation of the vector field f (x) at
a point p ∈ C. Letting p traverse C in the counterclockwise direction, the vector
f (x) rotates continuously and, upon returning to the original position, must have
rotated an angle 2kπ for some integer k, where the angle is measured counter-
clockwise. The integer k is called the index of the closed curve C. If C is chosen to
encircle a single isolated equilibrium point x̄, then k is called the index of x̄.

Theorem 2.17 (Index theorem, [66, Lemma 2.3]).

1. The index of a node, a focus, or a center is +1.

2. The index of a (hyperbolic) saddle is −1.

3. The index of a closed orbit is +1.

4. The index of a closed curve not encircling any equilibrium point is 0.

5. The index of a closed curve is equal to the sum of the indices of the equilibrium
points within it.

2.2 point-set topology
This section presents some basic knowledge of point-set topology based on [101].
For more detailed discussion, one may refer to [101].

Definition 2.18 ([101, p. 76]). A topology on a set X is a collection T of subsets of
X satisfying the following properties:

1. ∅ and X are in T ;

2. Arbitrary unions of elements of T are in T ;

3. Finite intersections of elements of T are in T .

A set X for which a topology T has been defined is called a topological space. A
subset U of X is called an open set of X if U belongs to T .
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Definition 2.19 ([101, p. 88]). Let X be a topological space with topology T . If Y
is a subset of X, the collection TY := {Y ∩U : U ∈ T } is a topology on Y, called
the subspace topology. With this topology, Y is called a subspace of X.

Definition 2.20 ([101, p. 102]). Let X and Y be topological spaces. A function
f : X → Y is continuous if for each open subset V of Y, the preimage f−1(V) is
an open subset of X.

2.3 topological and differential manifolds
Some basic concepts about topological and differential manifolds [76], [77], [107]
are explained here.

Suppose X ,Y are topological spaces. A component of X is a maximal nonempty
connected subset of X (i.e., a nonempty connected subset that is not properly
contained in any other connected subset of X ). A subset of X is precompact in X
if its closure in X is compact. A homeomorphism (diffeomorphism resp.) f : X → Y
is a continuous (smooth resp.) bijection that has a continuous (smooth resp.)
inverse. If there exists a homeomorphism between X and Y , then X and Y are
homeomorphic, denoted by X ≈ Y . If V andW are vector spaces, a bijective linear
map T : V → W is called an isomorphism. If this isomorphism exists, then V and
W are called isomorphic, denoted by V ∼=W . An open cover of X is a collection of
open subsets of X whose union is X .

Let f , g : X → Y be continuous maps. A homotopy from f to g is a continuous
map H : X × [0, 1] → Y such that H(x, 0) = f (x) and H(x, 1) = g(x) for all
x ∈ X . If there exists such a homotopy, then f and g are homotopic, denoted by
f ' g. Let h : Y → X be another continuous map. If f ◦ h ' idY and h ◦ f ' idX ,
where id(·) is the identity map, then h is a homotopy inverse for f , and f is called a
homotopy equivalence. In this case, X is homotopy equivalent to Y .

Let A ⊆ X . The inclusion map of A in X is ιA : A → X defined by ιA(x) = x
for x ∈ A. A continuous map r : X → A is a retraction if the restriction of r to
A is the identity map of A, or equivalently if r ◦ ιA = idA, where ιA : A → X
is the inclusion map and idA is the identity map of A. In this case, A is called
a retract of X . Furthermore, if ιA ◦ r is homotopic to the identity map of X (i.e.,
ιA ◦ r ' idX ), then r is a deformation retraction and A is called a deformation retract
of X . Equivalently, A is a deformation retract of X if there exists a homotopy
H : X × [0, 1] → X that satisfies H(x, 0) = x, H(x, 1) ∈ A for all x ∈ X and
H(a, 1) = a for all a ∈ A. In addition, if the homotopy H is stationary on A; that
is, the last equation is replaced by H(a, t) = a for all a ∈ A and all t ∈ [0, 1], then
r is a strong deformation retraction and A is called a strong deformation retract of
X . The space X is called contractible if the identity map of X is homotopic to a
constant map, or equivalently, if any point of X is a deformation retract of X .
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Intuitively, this means that the whole space X can be continuously shrunk to a
point.

Let M and N be smooth manifolds. A (coordinate) chart on M is a pair
(U , ϕ), where the coordinate neighborhood U is an open subset ofM and the (local)
coordinate map ϕ : U → Û ⊆ Rn is a homeomorphism for some integer n. The
component functions of ϕ are called local coordinates on U . The tangent space
TpM to M at p ∈ M is a vector space consisting of maps (called derivations)
Xp : C∞(p) → R which satisfy the linearity and product rules, where C∞(p)
is the set of smooth real-valued functions defined on an open neighborhood
of p. Other alternative definitions of the tangent space are summarized in [77,
pp. 71-73]. Given a sufficiently smooth map F : M → N , the tangent (or
differential) map of F at p ∈ M is denoted by F∗p : TpM→ TF(p)N and satisfies
F∗p(Xp)( f ) = Xp( f ◦ F) for Xp ∈ TpM and f ∈ C∞(F(p)). The notation F∗p is
used interchangeably with dFp or dF

∣∣
p. If the subscript p is omitted, then it is a

map F∗ : TM→ TN defined at any p ∈ M, where the tangent bundle TM is the
disjoint union of the tangent spaces at all points ofM (i.e., TM := äp∈M TpM),
and TN is defined analogously. The map F is a submersion on M if for any
p ∈ M, the tangent map F∗p at p is surjective. If the tangent map F∗p at p is
surjective, then p is called a regular point of F. If for every p ∈ F−1(q), the tangent
map F∗p at p is surjective, then q ∈ N is called a regular value of F. The definition
of a tubular neighborhood is in [77, pp. 137-139], and that of an embedded
submanifold is in [77, pp. 98-99]. For an introduction to fundamental groups and
homomorphisms of fundamental groups induced by continuous maps, see [76,
Chapter 7].
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3 VA N I S H I N G L E V E L VA L U E A N D
C O N V E R G E N C E TO Z E R O - L E V E L
S E T

In the vector-field guided path-following problem, the desired path is
described by the zero-level set of a sufficiently smooth real-valued function
and to follow this path, a (guiding) vector field is designed, which is not
the gradient of any potential function. The value of the aforementioned
real-valued function at any point in the ambient space is called the level value
at this point. In this chapter, we show that the vanishing of the level value
does not necessarily imply the convergence of a trajectory to the zero-level
set, while additional conditions or assumptions identified in the chapter are
needed to make this implication hold. The results in this chapter, although
obtained in the context of the vector-field guided path-following problem,
are widely applicable in many control problems, where the desired sets to
converge to (in particular, a singleton constituting a desired equilibrium point)
form the zero-level set of a Lyapunov(-like) function, and the system is not
necessarily a gradient system.

This chapter is based on

• W. Yao, B. Lin, B. D. O. Anderson, and M. Cao, “Refining dichotomy convergence in vector-field
guided path following control,” in European Control Conference (ECC), 2021.
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28 vanishing level value and convergence to zero-level set

3.1 introduction
Although equilibrium points of a dynamical system have often been the subject of
study in the control literature, it is important to recognize that the convergence of
trajectories of a dynamical system to a closed invariant set is also of intense research
interest in many control problems, which include the geometric path-following
problem [50], [74], [104] and the formation maneuvering problem [33], [143].
Note in particular that in the path-following problem, the trajectories of a system
are required to converge to and traverse along a desired path, which is usually a
geometric object like a closed curve rather than an equilibrium point [121], [137].

The closed invariant set can sometimes be described by the zero-level set of a
continuous real-valued non-negative function, such as a Lyapunov(-like) function
[59] or (the norm of) an error signal, while convergence of trajectories to the
set is usually characterized by the distance of points on a trajectory to the set
with respect to a metric (e.g., the Euclidean metric) [11], [54], [63], [66]. For
convenience, such a continuous non-negative function is referred to as the level
function and its value at a point is called the point’s level value. Therefore, one
natural idea is to use the level value, instead of the distance to the set, along a
system trajectory to characterize the convergence to the zero-level set. This idea
is utilized in vector-field guided path-following algorithms [50], [63], [74], [157],
[161], and in some applications of Barbalat’s lemma (e.g., Lemma 2.7, Theorem
2.8, [74, Theorem 1], [50, Theorem 1]). Now a central set-theoretic issue is whether
the vanishing of the level value entails the convergence to the zero-level set of the
level function: as clarified by examples later, a trajectory might diverge to infinity
and the associated level value can still converge to zero. An associated issue arises
from the fact that convergence with respect to a topology is a stronger notion
than that with respect to a metric, while the former is relatively less studied in
the control literature. This stronger notion is especially needed when a system
evolves in some topological space rather than a Euclidean space, or when there
are different metrics in a metric space but a metric-independent convergence
result is required.

Contributions: In this chapter, we discuss the relationship between vanishing
of the level value and the convergence of trajectories to the zero-level set. This
issue is motivated by, but independent of, the vector-field guided path-following
scenario. We show that as the level value evaluated at an infinite sequence
of points converges to zero, this sequence might not converge to the (possibly
compact) zero-level set in the Euclidean space. Specifically, we prove that the
sequence converges (with respect to a topology) to the union of the zero-level
set and infinity. This result is of interest in many control problems where the
desired set forms the zero-level set of a Lyapunov(-like) function or (the norm of)
an error signal. Additional conditions or assumptions are suggested such that
the vanishing of the level value does imply the convergence to the zero-level set,
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which is the intuitive idea behind many of the results in the literature (e.g., [32],
[50], [63], [74], [157]).

The rest of the chapter is organized as follows. Section 3.2 introduces the
vector-field guided path-following problem and formulate the problem. Then
the main results are presented in Section 3.3. Finally, Section 3.4 concludes the
chapter.

3.2 background and problem formulation
In the vector-field guided path-following problem, the desired path P is a set-
theoretic object in Rn, and it is the intersection of several hyper-surfaces described
by the zero-level sets of sufficiently smooth functions [24], [28], [36], [50], [89],
[98], [119], [156], [157]:

P = {ξ ∈ Rn : φi(ξ) = 0, i = 1, . . . , n− 1}, (3.1)

where φi : Rn → R are twice continuously differentiable functions. Some
conditions will be adopted in subsequent chapters to ensure that the φi functions
define a genuine path P , but now we only need to treat P as a non-empty
set-theoretic object. Let f = ‖(φ1, . . . , φn−1)‖, then P is the zero-level set of f ; i.e.,
P = f−1(0). For convenience, we call the non-negative real-valued function f the
level function, and for any point ξ ∈ Rn, the value f (ξ) is called the level value of
f at the point ξ. Since f (ξ) = 0 ⇐⇒

(
φ1(ξ), . . . , φn−1(ξ)

)
= 0 ⇐⇒ ξ ∈ P for

a point ξ ∈ Rn, one may use f (ξ) = ‖(φ1(ξ), . . . , φn−1(ξ))‖ to roughly represent
the distance from a point ξ to the desired path P . The following question arises
naturally:

Q1. Suppose f (ξ(t)) = ‖(φ1(ξ(t)), . . . , φn−1(ξ(t)))‖ → 0 as t → ∞ along a
continuous trajectory ξ(t) defined on [0, ∞), which can be an arbitrary continuous
function or a trajectory of an autonomous system. Does it hold that the trajectory
ξ(t) will converge to the set P with respect to a metric or a topology (called
metrical convergence and topological convergence respectively, and to be discussed
later)?

Note that this question Q1 does not depend on the path-following setting, but
is relevant to any problem where a set is described by the zero-level set of a
level function, and the convergence to the set is an indispensable requirement of
the problem. For Q1, one might be inclined to give a positive answer based on
intuition, but as shown later, the answer is negative even if the set P is compact.
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3.3 main results

3.3.1 Preliminaries

Suppose (M, d) is a metric space with a metric d, and its topology is induced
by the metric d. An (open) neighborhood of A ⊆ M is an open set U ⊆ M
such that A ⊆ U . An ε-neighborhood Uε of A ⊆M, where ε > 0 is a constant,
is an open neighborhood of A defined by Uε := {p ∈ M : dist(p,A) < ε}.
Note that an ε-neighborhood is an open neighborhood, but the converse is not
necessarily true. In particular, there can exist an open neighborhood U such
that no ε-neighborhood Uε is a subset of U . For example, let A be the x-axis in
the plane; i.e., A = {(x, 0) ∈ R2 : x ∈ R} and choose an open neighborhood
of A as U = {(x, y) ∈ R2 : x ∈ R, |y| < exp(−x)} (see Fig. 3.1). Intuitively,
the neighborhood U is “shrinking” infinitely close to the set A as x increases.
Then there does not exist an ε > 0 such that Uε ⊆ U . However, as will be
shown in Lemma 3.2, if A is compact, then (unsurprisingly perhaps) for any
open neighborhood of A, there always exists an epsilon neighborhood Uε that is
a subset of U .

3.3.2 Metrical convergence and topological convergence

Suppose (M, d) is a metric space with a metric d. One can regard M as a
topological space with the topology induced by its metric d. Suppose a set
A ⊆ M, called the desired set, is a level set of a function g : M → Rn; that is,
A = g−1(c) for some constant c ∈ Rn. One can define a (non-negative) level
function e(·) = ‖g(·)− c‖, where ‖ · ‖ =

√
d(·, ·), such that A = e−1(0). Namely,

A is the zero-level set of the level function e. Therefore, every point in the desired
set A renders the level value e = 0. When we consider convergence to a set, it is
important to clarify if this convergence is with respect to a metric or a topology,
which correspond to the notions metrical convergence and topological convergence
respectively defined below.

Definition 3.1 (Metrical and topological convergence). Consider a metric space
(M, d) and the topology induced by the metric d. Suppose A ⊆ M is a closed
and nonempty set, and let (ξi)

∞
i=0 ∈ M be an infinite sequence of points. The

sequence converges to A metrically if for any ε > 0, there exists I > 0 such that
ξi(i ≥ I) ⊆ Uε (or equivalently, dist(ξi,A) ≤ ε for i ≥ I), where ξi(i ≥ I) :=
{ξi ∈ M : i ≥ I}. The sequence (ξi)

∞
i=0 converges to A topologically if for any

open neighborhood U of A, there exists I′ > 0 such that ξi(i ≥ I′) ⊆ U .

In the sequel, we will clarify the relationship between level value convergence
(to a constant), metrical convergence (to a set) and topological convergence (to
a set). The notion of metrical convergence has been used in many, if not most,
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Figure 3.1: The non-compact desired set A ⊆ R2 is the x-axis, U = {(x, y) ∈ R2 : |y| <
exp(−x)} is an open neighborhood of A and Uε is an ε-neighborhood of A for
ε = 0.3. It is obvious that there does not exist an ε > 0 such that Uε ⊆ U . Also
note that the continuous trajectory ξ(t) = (t, exp(−0.8t)) converges metrically
but not topologically to the desired set A, since dist(ξ(t),A) → 0 as t → ∞
but ξ(t) 6∈ U for sufficiently large t > 0.

of the control-related textbooks (e.g., [11], [54], [66], [124]). However, the notion
of topological convergence is more general and is necessary when a topological
space is considered, or when there are different metrics to choose but one wants
the convergence results to be independent of which metric to use. From the
definition, if a trajectory converges topologically to the desired set A, then it
also converges to A metrically, but the converse is not true in general (see Fig.
3.1). Nevertheless, if the set A is compact, then metrical convergence also implies
topological convergence. To prove this, we first present the following lemma,
which is a standard result in topology (see [101, p.177, Exercise 2(d)]). For
completeness, we present a brief proof.

Lemma 3.2. Let A be nonempty and compact in the metric space (M, d). For any open
neighborhood U of A, there exists an ε-neighborhood Uε of A, such that Uε ⊆ U .

Proof. Since U is an open neighborhood of A, the complement K = M\ U is
closed in M. Define a function f : A → R≥0 by f (x) = dist(x,K), which is
continuous with respect to x. Since x /∈ K and K is closed, we have f (x) > 0
for any x ∈ A. Since A is compact, f has a positive lower bound on A; that is,
there exists a positive constant δ such that f (x) = dist(x,K) ≥ δ. Let ε = δ/2,
then it is obvious that the epsilon neighborhood Uε ∩K = ∅, and it follows that
Uε ⊆ U .
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We can now prove the following proposition.

Proposition 3.3. Suppose the desired set A is nonempty and compact. Then an infinite
sequence of points converges metrically to the desired set A if and only if it converges
topologically to A.

Proof. If a sequence of points converges topologically to A, then it is obvious
that it converges metrically to A. Now we prove the necessity. For any open
neighborhood U of A, there exists an epsilon neighborhood Uε ⊆ U from Lemma
3.2. Since the sequence (ξi)

∞
i=0 converges metrically to A, there exists I > 0, such

that ξi(i ≥ I) ⊆ Uε ⊆ U .

In much of the literature, an isolated equilibrium point of a system is studied,
often taken as the origin for convenience, and thus in these cases, the desired
set A = {0} is a singleton, which is obviously compact in the Euclidean space
Rn. Therefore, metrical convergence automatically implies the stronger notion of
topological convergence, and the existing results about convergence can directly
be applied to general topological spaces. However, in the study of, e.g., path-
following control, the desired set is usually not a singleton. If the desired set is
non-compact, then it is necessary to clarify which convergence notions are used1.

For simplicity, we mostly consider Euclidean space in the sequel. If we do not
specify which convergence notion we use throughout the thesis, then by default it is the
metrical convergence, but the notion of topological convergence will still be used wherever
this stronger notion is applicable.

Perhaps surprisingly, the convergence of the level value to zero for an infinite
sequence of points inM does not imply that the sequence converges (metrically
or topologically) to the desired set A. As shown later, the sequence may even
converge to infinity, even if the desired set A is compact inM. Before proceeding
to this result, we clarify the meaning of a sequence converging to ∞ or A∪ {∞},
where A is a nonempty set, in the following definition.

Definition 3.4. Consider a metric space (M, d) and a nonempty closed subset
A ⊆ M. A sequence (xi)i∈N ∈ M converges metrically to ∞ if for any b > 0,
there exists N ≥ 0, such that ‖xi‖ =

√
d(xi, xi) > b for i ≥ N. Consider the

topology induced by the metric d, then (xi)i∈N ∈ M converges topologically to
∞ if for any compact set U inM, there exists N ≥ 0, such that xi ∈ M\ U for
i ≥ N. The sequence converges metrically (topologically) to A∪ {∞} if there exists
a subsequence (xik )k∈N of (xi)i∈N such that the subsequence (xik )k∈N converges
metrically (topologically) to A or ∞.

The sequence in Definition 3.4 can analogously be replaced by a continuous
trajectory. This definition is motivated by the one-point compactification of M

1 One can similarly define stability with respect to a metric or a topology (e.g. , Definition 5.16).
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that is used in the proofs of Theorems 3.6 and 3.7. To ensure that the one-point
compactification ofM exists2, we impose the following assumption:

Assumption 3.5. The metric spaceM is locally compact3.

This assumption is satisfied ifM is a smooth manifold or a Euclidean space
Rn for some n ∈N. Theorem 3.6 follows.

Theorem 3.6. Define the (closed) set A := {ξ ∈ M : ‖φ(ξ)‖ = 0}, where φ :M→
Rm is a continuous function and m ∈ N. If (ξi)

∞
i=0 ∈ M is an infinite sequence of

points such that ‖φ(ξi)‖ → 0 as i → ∞, then the sequence converges topologically to
the set B := A∪ {∞} as i→ ∞.

Proof. The closedness ofA inM is due to the continuity of ‖φ‖ and the closedness
of {0} ⊆ R. We can consider the problem in the one-point compactification [101,
p. 185] of M. In other words, M can be embedded in a compact Hausdorff
space N , and ∞ is regarded as a particular point, denoted by p, in N . Let this
embedding be denoted by f :M→ N \{p}. We prove by contradiction. Suppose
the sequence (ξi)

∞
i=0 does not converge topologically to the set B = A ∪ {∞},

then the sequence (ζi)
∞
i=0, where ζi = f (ξi) ∈ N , does not converge topologically

to the set B′ := f (A) ∪ {p} ⊆ N . Therefore, there exists an open neighborhood
U ⊆ N of B′ and a subsequence (ζik )

∞
k=0 of

(
ζi
)∞

i=0 such that ζik /∈ U for all
k ≥ 0. Since N is sequentially compact [101, p. 179], the sequence (ζik )

∞
k=0

has a convergent subsequence (ζikl
)∞

l=0, which converges to a point ζ ′ ∈ N \ U ,

where (·) represents the closure of a set. Now turn to the original metric space
M. This means that the corresponding subsequence (ξikl

)∞
l=0 converges to a

point ξ ′ ∈ f−1(N \ U ) ⊆ M \ B. Since φ is continuous, we have φ(ξ ′) =
liml→∞ φ(ξikl

) = limi→∞ φ(ξi) = 0, which implies that ξ ′ ∈ A ⊆ B. But this is a
contradiction since (M\B) ∩ B = ∅.

Note that the sequence converging topologically to the set B := A ∪ {∞}
implies four mutually exclusive possibilities: 1) The sequence converges to A;
2) The sequence converges to ∞; 3) The sequence converges to both A and ∞
(in which case the set A is unbounded); 4) The sequence converges neither to A
nor ∞. The fourth case happens if the sequence has a subsequence converging
to A and another subsequence converging to ∞, but the whole sequence is not
convergent. However, if the set A is compact and a continuous trajectory is
considered, then only the first two cases are possible, as shown in the following
theorem.

2 There always exists the one-point compactification of a locally compact Hausdorff space [101, Chapter
3, Section 29].

3 The space M is locally compact at x ∈ M if there is a compact subspace N ⊆ M that contains a
neighborhood of x. IfM is locally compact at every point, thenM is said to be locally compact.
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Theorem 3.7. Define the (closed) set A := {ξ ∈ M : ‖φ(ξ)‖ = 0}, where φ :M→
Rm is continuous and m ∈ N. If A is compact, and ξ : R≥0 → M is continuous
and ‖φ(ξ(t))‖ → 0 as t → ∞, then ξ(t) converges topologically to the set A or to ∞
exclusively as t→ ∞.

To prove this theorem, we need Lemma 3.8 below. This lemma extends [156,
Lemma 7] as it considers a general metric space and the topological convergence
instead of a Euclidean space and the metrical convergence.

Lemma 3.8. Consider a metric space (M, d), where d is a metric. Define two nonempty
sets A1, A2 ⊆M such that dist(A1,A2) > 0, and let D := A1 ∪A2. If a continuous
trajectory p : R≥0 →M converges topologically to D as t→ ∞, then p(t) converges
topologically to either A1 or A2 exclusively as t→ ∞.

Proof of Lemma 3.8. Suppose dist(A1,A2) = β > 0. First, it is obvious that the
continuous trajectory p(t) cannot converge to both A1 and A2 simultaneously.
Now we show that p(t) converges to either A1 or A2 exclusively. We can let
ε = β/4, implying that the ε-neighborhoods Uε of A1 and Vε of A2 satisfy
dist(Uε,Vε) > 2ε. Also note that Wε := Uε ∪ Vε is the ε-neighborhood of
D = A1 ∪A2, andWε is a disconnected set. Since the continuous trajectory p(t)
converges topologically to D, there exists T > 0 such that p(t ≥ T) ⊆ Wε =
Uε ∪Vε. If p(t = T) ∈ Uε, then due to the continuity of p(t) and dist(Uε,Vε) > 2ε,
there holds ξ(t ≥ T) ⊆ Uε, and thereby p(t) converges topologically to A1. The
same argument applies to the case where p(t = T) ∈ Vε. Therefore, p(t)
converges topologically to either A1 or A2 exclusively as t→ ∞, dependent on
the initial condition.

Proof of Theorem 3.7. As in the proof in Theorem 3.6, we consider the one-point
compactification [101, p. 185] ofM. Thus,M can be embedded in the compact
space N , and ∞ is regarded as a point p in N . Let this embedding be denoted
by f : M → N \ {p}. Since A is compact, the image A′ = f (A) ⊆ N is also
compact, and it is obvious that4 dist(A′, p) > 0. According to Theorem 3.6, ξ(t)
converges topologically to A ∪ {∞} as t → ∞. Therefore, ζ(t) = f (ξ(t)) ∈ N
converges topologically to D := A′ ∪ {p} as t → ∞. According to Lemma 3.8,
ζ(t) converges topologically to either A′ or {p} exclusively as t → ∞. Turn to
the original metric spaceM; then this implies that ξ(t) converges topologically
to A or ∞ exclusively as t→ ∞.

Note that Theorem 3.6 is independent of whether the desired set A is compact
or not, and it does not depend on the path-following setting either, but for conve-
nience, we use path-following examples to illustrate the result of convergence
to ∞ permitted in Theorem 3.6. One example is presented in Example 5.8 in

4 The conclusion that dist(A′, p) > 0 is independent of which metric one chooses. This is because in a
metric space, there is always a positive distance between any two disjoint nonempty compact sets
(see, e.g., [136, Lemma 3.1]).
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Figure 3.2: The desired set A is a unit circle illustrated by a red curve in (a), and in this
subfigure, the arrows represent the normalized vector field computed by (1.2).
Although the level value e = φ = (x2 + y2 − 1) exp(−x) converges to 0 in (b),
the trajectory given by the magenta curve in (a) escapes to infinity.

Chapter 5 where the desired set A (i.e., the desired path P) is non-compact and
a trajectory converges to infinity even when the level value converges to 0. A
perhaps more surprising example is when the desired set A is a compact set as
in the following example.

Example 3.9. Suppose the desired set A (i.e., the desired path P) is a unit circle,
which is obviously compact. The φ function to describe the desired set A = P is
chosen as φ(x, y) = (x2 + y2 − 1) exp(−x) in (3.1), where n = 2, and the vector
field is constructed as in (1.2). As illustrated in Fig. 3.2, even though the level
value e = φ converges to 0, the trajectory does not converge to the circle but
rather escapes to infinity. This undesirable behavior does not appear if exp(−x)
is removed from φ (see Remarks 3.11 and 3.14 for a “good” choice of φ). Note
that since the desired path is compact, it is proved in Proposition 4.8 in Chapter
4 that if a trajectory starts sufficiently close to the desired path, it will converge to
the desired path or the singular set, regardless of the relationship between the
level value and the level function. /

Remark 3.10. Besides the theoretical interest in its own right, the importance of
Theorem 3.6 is also due to its close relevance to many control problems where an
error signal e : Rn → Rm is defined and the system’s desired states correspond
to ‖e‖ = 0; namely, if f (x) = ‖e(x)‖, then the system’s desired states form the
zero-level set f−1(0). Often, a Lyapunov or Lyapunov-like function V which takes
the error signal as the argument is involved, and a typical case is the quadratic
form V(e) = e>Pe, where P ∈ Rm×m is a positive definite matrix. Therefore,
the desired states (e.g., an equilibrium of the system) form the zero-level set
V−1(0) of V. In general, as shown by Theorem 3.6, the Lyapunov function value



36 vanishing level value and convergence to zero-level set

V → 0 =⇒ ‖e‖ → 0 along the system trajectory does not necessarily mean
that the trajectory will converge to the desired states V−1(0) = e−1(0), since the
trajectory might also diverge to infinity. Nevertheless, as shown in many control
textbooks (e.g., [66], [124]), the desired state is often an equilibrium point (i.e.,
V−1(0) = e−1(0) = {0}), and extra detailed analysis (e.g., [66, Theorem 4.1])
guarantees that once a trajectory starts close enough to the equilibrium point,
the trajectory will stay in a compact set containing the equilibrium point, and
thus the possibility of divergence to infinity is excluded. However, if the desired
states form a non-compact set, then it is more involved to exclude this divergence
possibility, or extra assumptions are necessary.

Theorem 3.6 is also relevant when the desired set convergence is proved by
using Barbalat’s lemma (e.g., Lemma 2.7, [133, Lemma 4.2]). Take Theorem 2.8 as
an example, which is an invariance-like theorem for non-autonomous systems.
This theorem states that under some conditions, we have W(x(t)) → 0 and
hence x(t) → W−1(0), where x(t) is a trajectory of a non-autonomous system
ẋ(t) = f (t, x) and W(·) is a continuous positive semidefinite function. This does
not contradict Theorem 3.6 because the assumptions in Theorem 2.8 guarantee
that the trajectory x(t) is bounded. /

Remark 3.11. Theorem 3.6 gives a negative answer to Q1. If the desired set A is
compact, to exclude the possibility of trajectories escaping to infinity such that
‖φ(ξi)‖ → 0 implies topological convergence to A, one may retreat to one of the
following two strategies:

1) Prove that trajectories are bounded. For example, one can find a Lyapunov-
like function V and a compact set Ωα := {x : V(x) ≤ α}, and prove that V̇ ≤ 0 in
this compact set Ωα. One might also retreat to the LaSalle’s invariance principle
(Theorem 2.6).

2) Modify φ(·), if feasible, such that ‖φ(x)‖ tends to a non-zero constant
(possibly infinity) as ‖x‖ tends to infinity. In other words, φ(·) is modified to be
radially non-vanishing.

Furthermore, regardless of whether the desired set A is compact or not, one
could impose the verifiable assumption introduced in Lemma 3.12 below. /

3.3.3 Convergence characterized by different level functions

The following result is a generalization of [156, Lemma 5].

Lemma 3.12. Suppose there are two non-negative continuous functions hi :M→ R≥0,
i = 1, 2. If for any given constant κ > 0, it holds that

inf{h1(p) : p ∈ M, h2(p) ≥ κ} > 0, (3.2)

then there holds
lim
k→∞

h1(pk) = 0 =⇒ lim
k→∞

h2(pk) = 0,
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where (pk)
∞
k=1 is an infinite sequence of points inM.

Proof. We prove this by contradiction. If h2(pk) does not converge to 0 as k→ ∞,
then

(∃ε > 0)(∀L > 0)(∃k′ ≥ L) h2(pk′) ≥ ε. (3.3)

Replacing κ by ε in the assumption of this theorem, we have

inf{h1(p) : p ∈ M, h2(p) ≥ ε} = β > 0, (3.4)

where β is some positive constant. Since limk→∞ h1(pk) = 0, it follows that

(∃L′ > 0)(∀k ≥ L′) h1(pk) < β. (3.5)

Let L be chosen as L′ in (3.3), then there exists k′ ≥ L′ such that h2(pk′) ≥ ε. Then
due to (3.4), h1(pk′) ≥ β, which contradicts (3.5). Therefore, limk→∞ h2(pk) =
0.

Based on Lemma 3.12 and Proposition 3.3, we have the following corollary,
which is a specialization of Theorem 3.6.

Corollary 3.13. Suppose A := {ξ ∈ M : ‖φ(ξ)‖ = 0}, where φ : M → Rm

is a continuous function. Let h1(·) = ‖φ(·)‖ and h2 = dist(·,A) in Lemma 3.12,
and suppose the condition (3.2) holds. If (ξi)

∞
i=0 is a sequence of points ξi ∈ M

such that ‖φ(ξi)‖ → 0 as i → ∞, then the sequence converges metrically to A (i.e.,
dist(ξi,A)→ 0). Moreover, if A is compact, then the convergence is also topological.

Remark 3.14. One can verify that the φ function in Example 3.9 does not satisfy the
condition in (3.2) with h1 and h2 defined as in Corollary 3.13, but the condition is
met if the φ function is changed to φ(x, y) = x2 + y2 − 1, and thus Corollary 3.13

holds. Note also that this modification renders φ radially non-vanishing. /

Corollary 3.13 underpins some proposed assumptions in the subsequent chap-
ters to facilitate the vector-field guided path-following algorithms.

3.4 conclusions
This chapter is motivated by the recent interest in the vector-field guided path-
following control problem, where one important issue is the convergence with
respect to a metric or a topology to a compact or non-compact desired set. The
desired set is the zero-level set of a non-negative continuous level function. We
show that the convergence of the level value to zero does not necessarily imply
the convergence of an infinite sequence of points to the compact or non-compact
desired set. This result is closely related to many control problems, where the
desired set is the zero-level set of a Lyapunov(-like) function.





4 PAT H F O L LO W I N G C O N T R O L I N
3 D U S I N G A V E C TO R F I E L D

Using a designed vector field to control a mobile robot to follow a given
desired path has found a range of practical applications, and it is in great need
to further build a rigorous theory to guide its implementation. In this chapter,
we study the properties of a general 3D vector field for robotic path following.
We derive conditions under which the local path-following error vanishes
exponentially in a sufficiently small neighborhood of the desired path, which
is key to show the local input-to-state stability (local ISS) property of the path-
following error dynamics. The local ISS property then justifies the control
algorithm design for a fixed-wing aircraft model. Our approach is effective
for any sufficiently smooth desired path in 3D, bounded or unbounded; the
results are particularly relevant since unbounded desired paths have not been
sufficiently discussed in the literature. Simulations are conducted to verify
the theoretical results.

This chapter is based on

• W. Yao, Y. A. Kapitanyuk, and M. Cao, “Robotic path following in 3D using a guiding vector
field,” in 2018 IEEE 57th Conference on Decision and Control (CDC), IEEE, 2018, pp. 4475-4480.

• W. Yao and M. Cao, “Path following control in 3D using a vector field,” Automatica, vol. 117, p.
108 957, 2020.
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4.1 introduction
There are already many existing methods for path following [9], [28], [37]. Notably,
it is shown in [137] that vector-field guided path-following algorithms achieve
the smallest cross-track error while they require the least control efforts among
several tested algorithms. In this context, a (guiding) vector field is carefully
designed such that its integral curves are proven to converge to and traverse the
desired path.

Many of the vector-field guided path-following algorithms are only applicable
to simple desired paths, such as circles and straight lines [104]. In addition, con-
vergence to the desired path is often guaranteed locally in a small vicinity of the
desired path. This is partly due to the fact that usually there are singular points1

in the vector field. Recently, the work [63] analyzes in details the properties of a
2D vector field for any desired path that is sufficiently smooth.

The previous study [63], as well as many other existing works [31], [104], [137],
only consider planar desired paths, while the 3D counterpart is less studied.
In [50], given that the desired path is described by the intersection of several
hyper-surfaces, a general vector field is proposed for robot navigation in the
n-dimensional Euclidean space. However, strictly speaking, the analysis of this
approach is only valid for (bounded) closed curves, such as circles, while the
analysis cannot be directly applied to unbounded desired paths such as a straight
line. Moreover, the assumption regarding the repulsiveness of the set of singular
points is perhaps conservative. For example, this assumption is valid for a circle,
but not for a Cassini oval or some other desired paths. In some literature, for
ease of analysis, it is assumed that the workspace is free of singular points, but
usually this is only guaranteed locally near the desired path.

In this chapter, we justify and employ a 3D guiding vector field for path fol-
lowing with rigorous analysis. Firstly, the convergence results and the maximal
extensibility of solutions are analyzed rigorously. In addition, the conditions
under which the local path-following error vanishes exponentially in a neigh-
borhood of the desired path are provided, which is typically not available in the
related literature. Secondly, we show the local input-to-state stability (ISS) of the
path-following error dynamics, which justifies the control algorithm design for
a nonholonomic model: a fixed-wing aircraft. In comparison to many methods
which only consider standard paths such as circles and straight lines, our method
is applicable to any 3D desired path that can be described by the intersection
of the zero-level sets of two implicit functions. And we specifically analyze
rigorously the case of unbounded desired paths. Note that the analysis for the
3D vector field in this chapter can be easily extended to any higher dimensional
vector field (see Chapter 9).

1 A point where a vector field becomes zero is called a singular point of the vector field [77, p. 219]. The
set of singular points of a vector field is called the singular set of the vector field.
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The rest of this chapter is organized as follows. Section 4.2 presents the problem
formulation. Then the analysis of the proposed vector field and its normalized
and perturbed counterparts are elaborated in Section 4.3 and 4.4 respectively.
The control algorithm for a fixed-wing aircraft model is provided in Section 4.5.
Finally, Section 4.7 concludes the chapter.

4.2 problem formulation

Suppose the desired path P is characterized by two functions φi : R3 → R, i =
1, 2, which are twice continuously differentiable:

P := {ξ ∈ R3 : φ1(ξ) = 0, φ2(ξ) = 0}. (4.1)

It is natural to assume that P is nonempty, connected and one-dimensional. We
will further require the regularity of the desired path as stated later in Assumption
4.3. One of the advantages of definition (4.1) is that the vector field can be derived
directly from the function φi(·) independent of the specific parametrization of
the path. Another advantage is that the distance between a point ξ ∈ R3 and
the path dist(ξ,P) = inf{‖ξ − p‖ : p ∈ P} can be approximated by the value of
‖(φ1(ξ), φ2(ξ))‖ under some assumptions presented later.

The vector-field guided path-following problem is formally defined in Problem
1.1, where the manifoldM is changed to R3.

4.2.1 The guiding vector field and assumptions

The 3D guiding vector field χ ∈ C1 : R3 → R3 is as follows:

χ(ξ) = n1(ξ)× n2(ξ)− k1e1(ξ)n1(ξ)− k2e2(ξ)n2(ξ), (4.2)

where ni(ξ) = ∇φi(ξ) is the gradient of φi, ki > 0 are constant gains and the
error function ei = φi(ξ) can be simply treated as the signed “distance” to the
surfaces {ξ ∈ R3 : φi(ξ) = 0} for i = 1, 2. For notational simplicity, we define
kmin = min{k1, k2} and kmax = max{k1, k2} throughout the chapter.

Remark 4.1. The vector field (4.2) can be interpreted intuitively. The first term,
n1(ξ) × n2(ξ), is the “translational velocity”, being perpendicular to the two
gradient vectors. The latter term, k1e1(ξ)n1(ξ) + k2e2(ξ)n2(ξ), acts as two signed
“forces” to pull the trajectory to get closer to the respective surfaces φi(ξ) = 0.
Therefore, roughly speaking, when ξ(0) ∈ P , the vector field only has the first
term, thus the trajectory moves tangential to the path and evolves along it; when
ξ(0) /∈ P , the latter term of the vector field enables the trajectory to converge to
the path in the meanwhile. The formal analysis is presented later. /
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To write (4.2) in a compact form, let τ(ξ) = n1(ξ) × n2(ξ) ∈ R3, N(ξ) =(
n1(ξ), n2(ξ)

)
∈ R3×2, K = diag(k1, k2) ∈ R2×2 and e(ξ) =

(
e1(ξ), e2(ξ)

)> ∈ R2.
Then the vector field (4.2) is rewritten to

χ(ξ) = τ(ξ)− N(ξ)Ke(ξ). (4.3)

To study the properties of the vector field, we investigate trajectories of the
following nonlinear autonomous ordinary differential equation (ODE):

d
dt

ξ(t) = χ(ξ(t)), t ≥ 0. (4.4)

We aim to let the integral curves of the vector field converge (metrically) to and
move along the desired path. Namely, dist(ξ(t),P) → 0 as t → ∞. Note that
once the trajectory is on the desired path, the vector field degenerates to a set
of tangent vectors of the desired path (precisely, χ(ξ) = τ(ξ)), thus the trajectory
stays on the desired path and moves along it.

Remark 4.2. In the 2D case [63], the vector field is χ = E∇φ − kφ∇φ, where
E ∈ SO(2) is a constant rotational matrix. This vector field can be further
simplified to χ = (E− kφI)∇φ. However, for the 3D vector field (4.2), due to the
introduction of the cross product, this vector field cannot be further simplified,
which complicates the analysis. This is the reason why the analysis of the
extension from the 2D vector field to 3D vector field is nontrivial. However,
after investigating the 3D case, the extension to a higher dimensional vector field
becomes straightforward (see Chapters 5, 7 and 9). /

As explained in Chapter 3, to carry out the analysis and to exclude some
pathological cases, some assumptions are necessary. First we define the invariant
set H (its invariance will be shown later):

H := {ξ ∈ R3 : N(ξ)Ke(ξ) = 0}, (4.5)

and the singular set C:

C = {ξ ∈ R3 : χ(ξ) = 0} = {ξ ∈ H : rank(N(ξ)) ≤ 1}. (4.6)

The equivalence of the two expressions in (4.6) can be seen as follows: if n1(ξ)
and n2(ξ) are linearly independent, then they are also linearly independent with
n1(ξ) × n2(ξ). Since the coefficient of n1(ξ) × n2(ξ) is non-zero, it is obvious
that χ(ξ) 6= 0. Therefore, the linear dependence of n1(ξ) and n2(ξ), which is
equivalent to rank(N(ξ)) ≤ 1, is a necessary condition for χ = 0. Also note that
in the second expression, we restrict the elements to be in H. The elements of
the singular set are singular points of the vector field. Now we present the main
assumptions in this chapter.
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Assumption 4.3. There are no singular points on the desired path. More precisely,
C is empty or otherwise there holds dist(C,P) > 0.

Assumption 4.4. For any given constant κ > 0, we have

inf{‖e(ξ)‖ : dist(ξ,P) ≥ κ} > 0.

Assumption 4.5. For any given constant κ > 0, we have

inf{‖N(ξ)Ke(ξ)‖ : dist(ξ,H) ≥ κ} > 0.

Assumption 4.3 is needed for the “regularity” of the desired path. In view
of the definition of the critical set C in (4.6), and noting that P ⊇ {ξ ∈ H :
rank(N(ξ)) = 2}, it follows that P ∪ C = H, but the intersection of P and
C can be nonempty. That is to say, singular points may exist on the desired
path. In this case, the robot will get “stuck” on the path, since the “translational
velocity” is zero at a critical point c (i.e., τ(c) = 0). This issue can be avoided
by making Assumption 4.3. Moreover, since φi ∈ C2 and P is the intersection
of φi = 0, i = 1, 2, a natural question arises regarding the “smoothness” of P .
Under Assumption 4.3, the next lemma can answer this question.

Lemma 4.6. Under Assumption 4.3, P is a C2 embedded submanifold in R3.

Proof. Denote Φ(ξ) = (φ1(ξ), φ2(ξ))
>. So Φ : R3 → R2, and P = Φ−1(0) is the

preimage of Φ due to the definition in (4.1). Under Assumption 4.3, for any
ξ ∈ P , the Jacobian matrix dΦ

dξ = N>(ξ) is of full rank. Therefore, 0 is a regular
value of Φ and P is a C2 embedded submanifold in R3 [77, Corollary 5.14].

Remark 4.7. Note that Assumption 4.3 implies that C ∩ P = ∅, but not vice versa.
However, using the fact that C and P are closed subsets in R3, if either C or P
is bounded (and thus compact), one has C ∩ P = ∅ ⇐⇒ dist(C,P) > 0. In
many practical applications, roughly speaking, the desired path is a simple closed
curve, and hence a bounded path. In this case, if C ∩ P = ∅, then Assumption
4.3 is held. /

Assumption 4.4 is motivated by observing that the desired path P can be
equivalently defined as

P = {ξ ∈ R3 : e(ξ) = 0}.

This inspires one to use ‖e(ξ)‖, the Euclidean norm of the vector function e,
rather than the more complicated quantity dist(ξ,P), to quantify the distance
between a point ξ ∈ R3 and the desired path. Although it is usually assumed
that ‖e(ξ)‖ approximates the distance to the desired path dist(p,P), this is not
always the case if Assumption 4.4 is not verified, as shown in Chapter 3 (see
Corollary 3.13). Thus, Assumption 4.4 is crucial in the sense that it enables one to
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use a Lyapunov function candidate related to ‖e(ξ)‖ and the decreasing property
to prove the convergence to the desired path conveniently. Therefore, under
Assumption 4.4, we call e(ξ) the path-following error, or simply the error, of a point
ξ ∈ R3 to the desired path P throughout the chapter.

Similarly, Assumption 4.5 enables one to use ‖N(ξ)Ke(ξ)‖ to measure the
distance to the invariant set H = P ∪ C. It is suggestive to regard ‖N(ξ)Ke(ξ)‖
as an “error” since when it equals 0, the point ξ is in H, in view of the definition
of H in (4.5). As detailed in Chapter 3, under Assumption 4.5, it can be similarly
concluded that the vanishing of the “invariant set error” ‖N(ξ(t))Ke(ξ(t))‖
implies the convergence of the trajectory to the set H, and hence to the desired
path P or the singular set C exclusively as t→ ∞.

4.3 analysis of the vector field

4.3.1 Bounded desired path

Since the desired path is sufficiently smooth, a bounded desired path is the trace
of a simple closed curve (i.e., it is homeomorphic to the unit circle S1)2. It is
proved below that the integral curves of (4.4) asymptotically converge to either
the desired path or the singular set.

Proposition 4.8. Let ξ(t) be the solution of (4.4). If the desired path P is bounded,
then ξ(t) will (locally) asymptotically converge to the desired path or the singular set
exclusively as t→ ∞. Namely, the trajectory will converge to either the desired path or
the singular set but not to both of them.

Proof. The time derivative of e with respect to t is:

ė(ξ(t)) = N>(ξ(t))ξ̇(t)

= N>(ξ(t))χ(ξ(t))

= −N>(ξ(t))N(ξ(t))Ke(ξ(t)).

(4.7)

Note that the above result has utilized the property that N>(ξ(t))τ(ξ(t)) = 0.
Now we define a continuously differentiable function:

V(ξ(t)) = 1/2 e>(ξ(t))Pe(ξ(t)), (4.8)

where P is a symmetric positive definite matrix. Then V > 0 on R3 \ P . Note
that the Lyapunov function candidate V(·) is regarded as a function of ξ(t) rather

2 Due to Lemma 4.6, desired paths can be conveniently classified into two categories: those homeomor-
phic to the unit circle S1 if they are compact and those homeomorphic to the real line R otherwise
[76, Theorem 5.27].
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than e(ξ(t)). Thus LaSalle’s invariance principle (Theorem 2.6) is valid to use in
the sequel. Taking the derivative of V with respect to t, we obtain:

V̇(ξ(t)) = 1/2 (ė>(ξ(t))Pe(ξ(t)) + e>(ξ(t))Pė(ξ(t)))

= −1
2

e>(ξ(t))Qe(ξ(t)),
(4.9)

where
Q = K>N>(ξ(t))N(ξ(t))P + PN>(ξ(t))N(ξ(t))K.

Let P = K, which is positive definite, then V̇(ξ(t)) = −‖N(ξ(t))Ke(ξ(t))‖2 ≤ 0
for ξ ∈ R3.

To use LaSalle’s invariance principle (Theorem 2.6), we need to construct a
compact set that is positively invariant with respect to (4.4). Given r > 0, a closed
ball is defined by Br = {ξ ∈ R3 : ‖ξ‖ ≤ r} ⊆ R3. Since P is bounded, r can be
chosen sufficiently large such that P ⊆ Br, and α := min‖ξ‖=r V(e(ξ)) > 0. Take
β ∈ (0, α) and let

Ωβ = {ξ ∈ Br : V(e(ξ)) ≤ β}. (4.10)

Obviously, Ωβ is in the interior of Br, and hence it is compact. In addition, since
V̇(ξ(t)) ≤ 0, the set Ωβ is also positively invariant. Therefore, (4.4) has a unique
solution defined for all t ≥ 0 whenever ξ(0) ∈ Ωβ. Let A = {ξ ∈ Ωβ : V̇(ξ) =
0} = {ξ ∈ Ωβ : N(ξ)Ke(ξ) = 0} ⊆ H. Next we are going to prove that the largest
invariant set in A is itself. Note that A is the union of two sets; i.e., A = A1 ∪A2,
where A1 = {ξ ∈ A : rank(N(ξ)) ≤ 1} and A2 = {ξ ∈ A : rank(N(ξ)) = 2}.
We consider the solutions of (4.4) starting from these two sets respectively.

1. When the trajectory starts from A1; i.e., ξ(0) ∈ A1, n1(ξ(0)) and n2(ξ(0))
are linearly dependent (this includes the case where either of them is zero).
Thus (4.4) indicates that ξ̇(t)|t=0 = 0. Since the solution of (4.4) exists and
is unique, ξ(0) ∈ A1 ⇒ ξ(t) ≡ ξ(0) ∈ A1, t ≥ 0.

2. When the trajectory starts from A2; i.e., ξ(0) ∈ A2, n1(ξ(0)) and n2(ξ(0))
are linearly independent. Then (4.4) becomes ξ̇(t)|t=0 = τ, which is the
tangent vector of P at ξ(0). According to Lemma 4.6 and the existence
and uniqueness of solutions of ordinary differential equations on manifolds
(e.g. [35]), the trajectory ξ(t) will not leave P , or A2. That is, ξ(0) ∈ A2 ⇒
ξ(t) ∈ A2, t ≥ 0.

The above discussion concludes that A is itself the largest invariant set. Then
according to LaSalle’s invariance principle (with respect to the autonomous ODE
(4.4)) (Theorem 2.6), every solution ξ ∈ R3 starting in Ωβ approaches A ⊆ H
as t → ∞. Since A1 ⊆ C, A2 ⊆ P and dist(C,P) > 0 (by Assumption 4.3), it
follows that dist(A1,A2) > 0 and in particular, the solution converges either to
the desired path or the singular set as t→ ∞.
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Asymptotic convergence is not quite appealing compared to exponential con-
vergence. For this reason, we show as follows the exponential convergence result.
We will use the Lyapunov function candidate in (4.8), and the compact set Ωβ in
the proof of Proposition 4.8, which is proved to be positively invariant. Moreover,
we define two more sets:

Eα = {ξ ∈ R3 : ‖e(ξ)‖ ≤ α}, (4.11)

which is the set of points at which the error is less than some positive number α.
This set can be treated as the (closed) neighborhood of the desired path P . Now
the theorem is stated below:

Theorem 4.9. Let ξ(t) be the solution to (4.4) and suppose that the desired path P is
bounded. There exists δ > 0 such that Eδ defined in (4.11) is compact, and ‖τ(ξ)‖ 6=
0 for every point ξ ∈ Eδ. Furthermore, the error ‖e(ξ(t))‖ (locally) exponentially
converges to 0 as t → ∞, given that the initial condition ξ(0) ∈ Eδ′ , where 0 < δ′ ≤
δ
√

kmin/kmax.

Proof. Since K is positive definite, from (4.8), we have

‖e(ξ)‖2 ≥ 2V(e(ξ))/kmax.

Taking the derivative of (4.8) with respect to time, we have (t is omitted for
simplicity):

V̇(e(ξ)) = −e>(ξ)Q(ξ)e(ξ) = −‖N(ξ)Ke(ξ)‖2,

where
Q(ξ) = KN>(ξ)N(ξ)K (4.12)

is positive semidefinite. Note that det(Q(ξ)) = k2
1k2

2‖τ(ξ)‖2. Therefore,
det(Q(ξ)) 6= 0 if and only if n1 and n2 are linearly independent.

By Assumption 4.3, ‖τ(ξ)‖ has a non-zero minimum on P (i.e., there exists
minξ∈P ‖τ(ξ)‖ > 0). By the continuity of ‖τ(ξ)‖, the compactness of the desired
path P and Assumption 4.4, there exists δ > 0 such that for any point ξ ∈ Eδ

as defined in (4.11), we have ‖τ(ξ)‖ 6= 0. Note that δ can be chosen sufficiently
small such that Eδ is bounded, hence compact3.

Let ι = kminδ2/2, then4 Ωι ⊆ Eδ. Therefore, in the compact and positively
invariant set Ωι, we have ‖τ(ξ)‖ 6= 0, implying that Q(ξ) does not loose rank, and
further implying that Q(ξ) is positive definite. Let Λ := minξ∈Ωι

{λmin(Q(ξ))},
where λmin(·) denotes the minimum eigenvalue. It can be observed that Λ > 0.

3 This is justified as follows: one can choose a set Ωβ as defined in (4.10), which is compact. Then
there exists γ′ > 0 such that Eγ′ ⊆ Ωβ (this is true because by choosing γ′ ≤

√
2β/kmax, ∀ξ ∈

Eγ′ , ‖e(ξ)‖ ≤ γ′ =⇒ V(ξ) ≤ kmax‖e(ξ)‖2/2 ≤ kmaxγ′2/2 ≤ β =⇒ ξ ∈ Ωβ). Therefore, Eγ′ is
compact. Finally, by selecting 0 < δ < min{γ, γ′}, it can be guaranteed that Eδ is compact as desired
(since Eδ ⊆ Eγ′ ⊆ Ωβ).

4 Since ∀ξ ∈ Ωι, kmin‖e(ξ)‖2/2 ≤ V(e(ξ)) ≤ ι =⇒ ‖e(ξ)‖ ≤ δ =⇒ ξ ∈ Eδ.
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Note that Λ always exists because the eigenvalues of a matrix continuously de-
pends on its entries, and the minimum is obtained over a compact set. Therefore,

V̇(e(ξ)) ≤ −Λ‖e(ξ)‖2 ≤ −2ΛV(e(ξ))/kmax,

which implies that

V(e(ξ)) ≤ V(e0) exp (−2Λt/kmax) ,

and furthermore,
‖e(ξ)‖ ≤ c‖e0‖ exp (−Λt/kmax) ,

where e0 = e(ξ(0)) and c =
√

kmax/kmin. Therefore, ‖e(ξ(t))‖ exponentially
approaches 0 as t approaches infinity. Lastly, note that Eδ′ ⊆ Ωι; thus ξ(0) ∈
Eδ′ =⇒ ξ(0) ∈ Ωι.

4.3.2 Unbounded desired path

The analysis presented above for bounded desired paths cannot be directly
applied to an unbounded desired path. This is partly because for any (closed)
ball Br containing part of the desired path, α = min‖ξ‖=r V(e(ξ)) = 0. Therefore,
β ∈ (0, α) is not valid in the definition of Ωβ in (4.10). The key issue is that
LaSalle’s invariance principle is no longer effective regarding an unbounded
desired path, since there is not a compact set containing the desired path. In
addition, the solution to (4.4) may not be extended infinitely. Therefore, we need
to analyze this case differently.

4.3.2.1 Extensibility of solutions

Assuming that ‖τ‖ = ‖n1 × n2‖ is upper bounded on some set, it can still be
proved that solutions exist for all t ≥ 0. We consider the following unbounded
set:

Ξβ = {ξ ∈ R3 : V(e(ξ)) ≤ β}, (4.13)

where β > 0. The definition is similar to that of Ωβ in (4.10), except that Ξβ is
unbounded since P ⊆ Ξβ and P is unbounded.

Lemma 4.10. Suppose ‖τ‖ is upper bounded in Eα for some α > 0. Let ξ(t) be the
trajectory with respect to (4.4) with the initial condition ξ(0) ∈ Eα′ , where 0 < α′ ≤
α
√

kmin/kmax. Then the trajectory ξ(t) can be extended to infinity; namely, the trajectory
ξ(t) exists for t ≥ 0.

Proof. Suppose the maximum extended time t∗ of the solution is finite; i.e.,
t∗ < ∞. Let β = kminα2/2. First one observes that Ξβ ⊆ Eα (since ∀x ∈
Ξβ, kmin‖x‖2/2 ≤ V(x) ≤ β =⇒ ‖x‖ ≤

√
2β/kmin ≤ α =⇒ x ∈ Eα). Using the



48 path following control in 3d using a vector field

same Lyapunov function as in (4.8), its derivative with respect to t is V̇(e(ξ(t))) =
−‖N(ξ(t))Ke(ξ(t))‖2 ≤ 0. Therefore, Ξβ is positively invariant (note that in this
case Ξβ is not bounded). This means that ξ(0) ∈ Ξβ =⇒ ξ(t) ∈ Ξβ ⊆ Eα

for t ∈ [0, t∗), where ξ(t) is the trajectory with respect to (4.4). In other words,
‖τ(ξ(t))‖ is upper bounded by some positive number denoted by κb for all
t ∈ [0, t∗).

Since V(ξ(t)) ≥ 0, it follows that

∫ t∗

0
‖N(ξ(t))Ke(ξ(t))‖2dt = −

∫ t∗

0
V̇(ξ(t))dt = V(ξ(0))−V(ξ(t∗)) < ∞.

Therefore, for all 0 ≤ t̃ < t∗,

‖ξ(t̃)− ξ(0)‖ ≤
∫ t̃

0
‖ξ̇(t)‖dt ≤

∫ t̃

0
‖τ(ξ(t))‖dt +

∫ t̃

0
‖N(ξ(t))Ke(ξ(t))‖dt

≤ κbt∗ +

√
t∗
∫ t∗

0
‖N(ξ(t))Ke(ξ(t))‖2dt := R < ∞.

The last inequality is due to Hölder’s inequality. Therefore, the trajectory ξ(t)
remains in a compact set {p ∈ R3 : ‖p− ξ(0)‖ ≤ R}, and hence the trajectory
can be extended to infinity (i.e., the trajectory exists for t ≥ 0). Lastly, note that
Eα′ ⊆ Ξβ; thus ξ(0) ∈ Eα′ =⇒ ξ(0) ∈ Ξβ.

Corollary 4.11. Suppose the assumptions of Lemma 4.10 are satisfied. Then along the
trajectory ξ(t) with respect to (4.4), we have∫ ∞

0
‖N(ξ(t))Ke(ξ(t))‖2dt = −

∫ ∞

0
V̇(ξ(t))dt < +∞. (4.14)

4.3.2.2 Convergence Results

We can draw a similar conclusion for the case of an unbounded desired path. To
this end, we present the absolute continuity of the Lebesgue integral first.

Lemma 4.12 (Absolute continuity of Lebesgue integrals [62]). If f is Lebesgue
integrable on Rn, then for any ε > 0, there exists δ > 0 such that for all measurable sets
D ⊆ Rn with measure m(D) < δ, it follows that

∫
D | f |dm < ε.

Now we are ready to prove the following result.

Corollary 4.13. For any ε > 0, there exists 0 < δ ≤ ε such that for all intervals with
length |∆| < δ, ∫

∆
‖N(ξ(t))Ke(ξ(t))‖dt < 2ε.
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Proof. For any function f : R→ Rn, we define a new function f (t)>1 as below:

f (t)>1 =

{
f (t), ‖ f (t)‖ > 1,

0, otherwise.

Another function f (t)≤1 is similarly defined. It follows that

∫ ∞

0
‖N(ξ(t))Ke(ξ(t))‖>1dt ≤

∫ ∞

0
‖N(ξ(t))Ke(ξ(t))‖2

>1dt

≤
∫ ∞

0
‖N(ξ(t))Ke(ξ(t))‖2dt < ∞,

where the last inequality is due to Corollary 4.11. Therefore, ‖N(ξ(t))Ke(ξ(t))‖>1
is Lebesgue integrable. Thus, for any ε > 0, there exists γ > 0 as the
length of the interval such that Lemma 4.12 holds. In addition, taking
δ = min{γ, ε}, then |∆| can be chosen sufficiently small such that |∆| < δ ≤ ε,
and

∫
∆ ‖N(ξ(t))Ke(ξ(t))‖>1dt < ε. Finally,

∫
∆
‖N(ξ(t))Ke(ξ(t))‖dt =

∫
∆
‖N(ξ(t))Ke(ξ(t))‖>1dt

+
∫

∆
‖N(ξ(t))Ke(ξ(t))‖≤1dt ≤ ε + ε = 2ε.

The following proposition for an unbounded desired path is the counterpart of
Proposition 4.8.

Proposition 4.14. Let ξ(t) be the solution of (4.4). If P is unbounded and the assump-
tions of Lemma 4.10 are satisfied (i.e., ‖τ‖ is upper bounded by κb > 0 in Eα for some
α > 0), then the trajectory ξ(t) will asymptotically converge to the desired path or the
singular set exclusively as t→ ∞.

Proof. Define the Lyapunov function candidate V(ξ(t)) as in Proposition 4.8 and
denote η(ξ(t)) = ‖N(ξ(t))Ke(ξ(t))‖. Suppose ξ(t) does not converge to H, then
there exists an increasing time sequence {tk}, and tk → ∞ as k → ∞, such that
(due to Assumption 4.5)

dist(ξ(tk),H) > δ > 0⇒ η(ξ(tk)) > ε > 0.

Therefore, V̇(ξ(tk)) = −η2(ξ(tk)) < −ε2. According to Assumption 4.5, there
exists ε′ > 0 such that when dist(ξ,H) > δ/2, one has ‖η(ξ)‖ > ε′. Since
dist(ξ(tk),H) > δ, given a ball B(ξ(tk), δ/4), then for any y ∈ B(ξ(tk), δ/4), it
follows that (see Fig. 4.1)

dist(y,H) > δ/2⇒ V̇(y) < −ε′2.



50 path following control in 3d using a vector field

Figure 4.1: The illustration of the proof of Proposition 4.14.

Taking ε = δ/(2(2 + κb)) in Corollary 4.13, there exists an interval ∆ with the
length |∆| < ε such that

∫
∆
‖ξ̇(t)‖dt =

∫
∆
‖τ(ξ(t))− N(ξ(t))Ke(ξ(t))‖dt

≤
∫

∆
‖τ(ξ(t))‖dt +

∫
∆
‖N(ξ(t))Ke(ξ(t))‖dt ≤ (κb + 2)ε < δ/2.

Then it follows that

ξ[tk − ∆/2, tk + ∆/2] ⊆ B(ξ(tk), δ/4).

Therefore, ∫ tk+∆/2

tk−∆/2
V̇(ξ(t))dt < −ε′2∆.

This leads to5

∫ ∞

0
V̇(ξ(t))dt ≤

∞

∑
k=1

∫ tk+∆/2

tk−∆/2
V̇(ξ(t))dt ≤ −

∞

∑
k=1

ε′2∆ ≤ −∞, (4.15)

which contradicts Corollary 4.11. Therefore, ξ(t) converges to H as t→ ∞. Then
due to Assumption 4.3, the solution converges either to the desired path or the
singular set.

For unbounded desired paths, we also have the following exponential conver-
gence result. Before presenting the result, we say that a function f : Ω ⊆ Rm →

5 The first inequality of (4.15) is justified since one can always choose the sequence {tk} such that
tk+1 − tk > ∆ for all k ≥ 1.



4.3 analysis of the vector field 51

Rn is bounded away from zero in Ω if there exists a real number c > 0, such that
‖ f (x)‖ > c for all x ∈ Ω.

Theorem 4.15. Let ξ(t) be the solution to (4.4) and the desired path P be unbounded.
Define Eα as in (4.11) for some α > 0. Suppose both ‖n1(ξ)‖ and ‖n2(ξ)‖ are upper
bounded in Eα, and ‖τ(ξ)‖ is bounded away from zero on P , then there exists 0 < γ ≤ α
such that infξ∈Eγ

‖τ(ξ)‖ > 0. Furthermore, the error ‖e(ξ)‖ (locally) exponentially
converges to 0 as t → ∞, given that the initial condition ξ(0) ∈ Eγ′ , where 0 < γ′ ≤
γ
√

kmin/kmax.

Proof. It is obvious that the assumptions of Lemma 4.10 are satisfied. Thus the
solution ξ(t) with respect to (4.4) can be prolonged to infinity. Since the desired
path is unbounded, we cannot find a compact set Ωβ as in Theorem 4.9. Instead,
we consider Ξβ defined in (4.13). Since ‖τ‖ is bounded away from zero on
P , and due to the continuity of τ(ξ) with respect to its argument, there exists
0 < γ ≤ α such that infξ∈Eγ

‖τ(ξ)‖ > 0. That is, ‖τ‖ is bounded away from zero
in the subset Eγ ⊆ Eα. It can be shown that there exists a positively invariant set
Ξβ ⊆ Eγ by choosing β = kminγ2/2 (see the proof in Lemma 4.10), where Ξβ is
defined in (4.13). Next we consider the case where the solution ξ(t) starts from
this invariant set Ξβ. Since ‖τ‖ is bounded away from zero in the subset Eγ ⊃ Ξβ

as shown previously, there are no singular points in Ξβ, and thus we do not need
to consider the case where the solution converges to the singular set, and thus
the remaining proof is similar to that of Theorem 4.9. It follows that

inf
ξ∈Ξβ

λ1(Q(ξ))λ2(Q(ξ)) = inf
ξ∈Ξβ

det(Q(ξ)) = k2
1k2

2 inf
ξ∈Ξβ

‖τ(ξ)‖2 > 0,

where λ1(Q(ξ)) and λ2(Q(ξ)) are two eigenvalues of Q(ξ). Note that the sum
of the two eigenvalues λ1(Q(ξ)) + λ2(Q(ξ)) = tr(Q(ξ)) = k2

1‖n1‖2 + k2
2‖n2‖2.

Since ‖n1‖ and ‖n2‖ are upper bounded in Ξβ ⊆ Eα, the two eigenvalues are
finite. Therefore, we have Λ′ := infξ∈Ξβ

{λmin(Q(ξ))} > 0. This leads to

V̇(e(ξ)) ≤ −Λ′‖e(ξ)‖2 ≤ 2Λ′V(e(ξ))/kmax.

Therefore,

V(e(ξ)) ≤ V(e0) exp
(
−2Λ′t/kmax

)
=⇒ ‖e(ξ)‖ ≤ c‖e0‖ exp

(
−Λ′t/kmax

)
,

where e0 = e(ξ(0)) and c =
√

kmax/kmin. Consequently, the error ‖e(ξ)‖ will
exponentially approach 0 as t approaches infinity. Lastly, note that Eγ′ ⊆ Ξβ; thus
ξ(0) ∈ Eγ′ =⇒ ξ(0) ∈ Ξβ.

Remark 4.16. For an unbounded desired path, the result presented above is
valid under the condition that ‖τ‖ = ‖n1 × n2‖ is upper bounded. This seems
restrictive. However, by introducing a smooth bounding operator fb : Rn → Rn,
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‖ fb(τ)‖ can be guaranteed to be bounded and additionally, fb(τ) is smooth. For
example, fb(ξ) =

ξ
1+‖ξ‖2 , where ξ ∈ R3 and the upper bound is 1/2. However,

‖ fb(ξ)‖ vanishes as ‖ξ‖ → ∞. Another better choice of the smooth bounding
operator contains a bump function. For example,

fb(ξ) =
ξ

1 + ϕ(‖ξ‖)‖ξ‖ ,

where ϕ : R→ R is a bump function chosen as

ϕ(x) =



0, x ∈ [−1, 1]

exp
( −1

x− 1

)
, x ∈ [1, ∞)

exp
(

1
x + 1

)
, x ∈ (−∞,−1]

and the upper bound is 1. Therefore, the original guiding vector field can
be modified to χ(ξ) = fb(n1 × n2) − k1e1n1 − k2e2n2. Note that the smooth
bounding operator neither changes the direction of n1 × n2 nor affects the speed
of the convergence to the desired path, which is dominated by the unmodified
latter term as can be seen from the time derivative of the Lyapunov function in
Proposition 4.8. Nevertheless, for practical reasons, it is desirable to normalize
the original vector field, but undesirably compromise the maximal extensibility
of the solutions. This will be discussed in the next section. /

4.4 normalization and perturbation of the vec-
tor field

In this section, based on the results presented above, we study the properties of
the normalized 3D guiding vector field. We show that the essential feature of the
vector field is the direction rather than the amplitude at each point in R3. Then
the robustness of the vector field against perturbation is also analyzed.

For notational simplicity, we define the normalization operator ·̂ : Rn → Rn,
which normalizes a given non-zero vector a such that â := a/‖a‖. Therefore, the
desired direction of velocity at location ξ ∈ R3 is represented by χ̂(ξ), where χ(ξ)
is the vector field in (4.2). This vector field is well defined in the open set R3 \ C,
where ‖χ‖ 6= 0. The integral curves of the normalized vector field correspond to
the solution to the following autonomous ODE:

d
dt

ξ(t) = χ̂(ξ(t)), (4.16)
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where ξ : R≥0 → R3 \ C. The existence and uniqueness of solutions of the ODE
can be guaranteed since the right-hand side of (4.16) is continuously differentiable
in R3 \ C. Note that the vector field in (4.16) differs from that in (4.4) by a positive
scalar function that only depends on the states ξ. Therefore, these two vector
fields have the same direction of each vector at the same point. This fact implies
that there is a bijection between non-equilibrium solutions of the two differential
equations (4.4) and (4.16). Recall that a phase portrait or phase diagram is a geometric
picture of all the orbits of an autonomous differential equation [25, p. 9].

Lemma 4.17. The ODE (4.16) with a normalized vector field and the ODE (4.4) with
the original vector field have the same phase portrait in R3 \ C.

Proof. The right-hand side of (4.16) can be written as χ̂(ξ) = χ(ξ)/‖χ(ξ)‖, where
the original vector field χ(ξ) is scaled down by a positive and continuously
differentiable function 1/‖χ(ξ)‖ in R3 \ C. Therefore, the ODE (4.16) with a
normalized vector field is obtained from the ODE (4.4) by a re-parametrization
of time [25, Proposition 1.14]. Thus, they have the same phase portrait in R3 \ C
[25].

Since the differential equation (4.16) is defined in R3 \ C, the maximal interval
to which a solution can be extended is finite when the solution is approaching C.

Lemma 4.18. Let ξ(t) be a solution to (4.16). If the solution is only maximally extended
to t∗ < ∞, then it will converge to the singular set; that is, limt→t∗ dist(ξ(t), C) = 0.

Proof. Since ‖ξ̇(t)‖ is bounded, ξ∗ := limt→t∗ ξ(t) = ξ(0) +
∫ t∗

0 ξ̇(t)dt exists. To
show that ‖χ(ξ∗)‖ = 0, suppose ‖χ(ξ∗)‖ > 0. Since χ continuously depends on
ξ, the same holds in the vicinity of ξ∗, and hence the right-hand side of (4.16) is
well defined and bounded in the vicinity of ξ∗. This enables one to define the
solution at t = t∗ and, by the existence theorem [66], extend to [t∗, t∗ + ε) for
some ε > 0. We arrive at the contradiction with the definition of t∗, which proves
that ‖χ(ξ∗)‖ = 0. Thus the solution will converge to the singular set.

Due to Lemma 4.18, the solution to (4.16) will possibly converge to the singular
set in finite time. However, it can still be similarly proved that the trajectory
will either converge to the desired path or the singular set by Lemma 4.17.
Furthermore, the exponential convergence results still hold under the conditions
of Theorem 4.9 for bounded desired paths or Theorem 4.15 for unbounded desired
paths. The corresponding results are straightforward and thus not presented
here.

Now we consider a system with a perturbed vector field

ξ̇(t) = χ(ξ(t)) + d(t), (4.17)



54 path following control in 3d using a vector field

where χ is the vector field in (4.2) and d : R≥0 → Rn is a piecewise continuous
and bounded function of time t for all t ≥ 0. Therefore, the dynamics for the
path-following error with respect to to (4.17) is

ė(t) = N(ξ(t))>(χ(ξ(t)) + d(t)). (4.18)

It will be proved subsequently that the path-following error dynamics (4.18) is
locally ISS (see Section 2.1.4). We will use the definition of an open ball: given
a > 0, the open ball Ba ⊆ Rn is defined as Ba := {ξ ∈ Rn : ‖ξ‖ < a}.
Theorem 4.19. Suppose that the desired path P is bounded. Then the path-following
error (4.18) is locally ISS.

Proof. From Theorem 4.9, there exists δ > 0 such that Eδ defined in (4.11) is
compact, and ‖τ(ξ)‖ 6= 0 for every point ξ ∈ Eδ, and thus the eigenvalue

Λ′ := min
ξ∈Eδ

{λmin(Q(ξ))} > 0,

where the matrix Q is defined in (4.12). We use the same Lyapunov function in
(4.8) and take the time derivative:

V̇ = −‖NKe‖2 + d>NKe (4.19)

≤ −1
2
‖NKe‖2 +

1
2
‖d‖2 (4.20)

(4.12)
= −1

2
e>Qe +

1
2
‖d‖2 (4.21)

≤ −1
2

Λ′‖e‖2 +
1
2
‖d‖2 (4.22)

≤ − ε

2
Λ′‖e‖2, ∀‖e‖ ≥ ρ(‖d‖) > 0, (4.23)

for all (t, e, d) ∈ [0, ∞) × Bδ × Br, where r = δ
√
(1− ε)Λ′ with 0 < ε < 1,

and ρ(‖d‖) = ‖d‖/
√
(1− ε)Λ′ is a class K function. Note that (4.20) is due to

Young’s inequality (i.e., d>NKe ≤ ‖d‖2/2 + ‖NKe‖2/2). Also note that (4.22)
is verified since we have restricted e ∈ Bδ. The disturbance is also restricted
to d ∈ Br such that ρ(‖d‖) < δ is satisfied and (4.23) is valid. Therefore, the
path-following error in (4.18) is locally ISS by Lemma 2.11.

Remark 4.20. This theorem indicates that the error satisfies

‖e(ξ(t))‖ ≤ β(‖e(ξ(0))‖, t) + γ

(
sup

s∈[0,t]
‖d(s)‖

)

for a class KL function β and a class K function γ. If the disturbance d(t) is
vanishing as t→ ∞, then the error ‖e(ξ(t)‖ → 0 as t→ ∞; if the disturbance d(t)
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is bounded but non-vanishing with respect to time t, then the error ‖e(ξ(t))‖ will
be uniformly ultimately bounded by a class K function of sups∈[0,∞) ‖d(s)‖. /

Remark 4.21. This theorem can be easily adapted for unbounded desired paths if
the assumptions of Theorem 4.15 are satisfied. The significance of this theorem
is that it justifies the design of control algorithms: one can focus on designing a
control algorithm such that the direction of the robot’s velocity converges to that
of the vector field. /

4.5 control algorithm for a fixed-wing aircraft
We use the following fixed-wing aircraft kinematics model discussed in [119]:

ẋ = s cos θ (4.24a)

ẏ = s sin θ (4.24b)

ż = τ−1
z (−z + zu) (4.24c)

θ̇ = τ−1
θ (−θ + θu) (4.24d)

ṡ = τ−1
s (−s + su), (4.24e)

where (x, y, z) is the position of the center of mass of the aircraft, s > 0 is the
airspeed, θ is the yaw angle, τz > 0, τθ > 0 and τs > 0 are the time constants,
and zu, θu and su are the control inputs. The control of the z coordinate in (4.24c)
and the airspeed s in (4.24e) are independent from the other variables. Therefore,
we can first consider the planar orientation control. Denote the orientation of the
aircraft on the X-Y plane and that of the normalized vector field χ̂ on the X-Y
plane by hp(θ) and χp respectively; that is,

hp(θ) := (cos θ, sin θ)>

and
χp := (χ̂1, χ̂2)

>,

where χ̂1 and χ̂2 are the first two entries of χ̂. Note that the superscript p implies
that the vector is the projection on the X-Y plane. To utilize the vector field
designed and analyzed before, it is desirable that hp is steered to align with χp. In
other words, we want to achieve ĥp → χ̂p, where ·̂ is the normalization operator
defined before. For convenience, we call ĥp and χ̂p the planar orientations of the
aircraft and of the vector field respectively. It can be observed that ĥp = hp and

χ̂p =
χp

‖χp‖ =
1√

χ̂2
1 + χ̂2

2

[
χ̂1

χ̂2

]
=

1√
χ2

1 + χ2
2

[
χ1

χ2

]
.
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Before presenting the control algorithm, we first state a lemma regarding some
calculations involved. We consider a vector function r : Rn → Rm, where m, n are
positive integers, defined as x := (x1, . . . , xn)

> 7→ r(x) := (r1(x), . . . , rm(x))>. In
addition, each xi is a function of time t 7→ xi(t). The Jacobian matrix with respect

to x is denoted by J(r); that is, J(r) =


∂r1
∂x1

· · · ∂r1
∂xn

...
...

...
∂rm
∂x1

· · · ∂rm
∂xn

. We define E ∈ SO(2) as

the (90◦) rotation matrix E =

[
0 −1

1 0

]
.

Lemma 4.22. Given a vector function r : Rn → Rm defined above, it holds that

d
dt

r̂(x(t)) =
1
‖r‖ (I − r̂r̂>)J(r)

d
dt

x, (4.25)

where I is the identity matrix of suitable dimensions, and J(r) is the Jacobian matrix
with respect to x. If m = 2, then the above equation can be transformed to

d
dt

r̂(x(t)) =
(−1
‖r‖ r̂>EJ(r)

d
dt

x
)

Er̂. (4.26)

Proof. For notational simplicity, we denote ∂rx1 := ∂r
∂x1

= ( ∂r1
∂x1

, · · · , ∂rm
∂x1

)
>

. The
calculation is shown below:

∂

∂x1
‖r‖ = 1

2
(r>r)−

1
2 (2∂rx1

>r) =
∂rx1

>r
‖r‖ . (4.27a)

∂

∂x1

1
‖r‖ = −‖r‖−2 ∂

∂x1
‖r‖ (4.27a)

= −∂rx1
>r

‖r‖3 . (4.27b)

∂r̂x1 =
∂

∂x1

r
‖r‖ =

∂

∂x1
r · 1
‖r‖ + r · ∂

∂x1

1
‖r‖

(4.27b)
=

1
‖r‖ (I − r̂r̂>)∂rx1 . (4.27c)

J(r̂) =
[
∂r̂x1 · · · ∂r̂xn

]
(4.27c)
=

1
‖r‖ (I − r̂r̂>)

[
∂rx1 · · · ∂rxn

]
=

1
‖r‖ (I − r̂r̂>)J(r).

(4.27d)
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d
dt

r̂ = J(r̂)ẋ
(4.27d)
=

1
‖r‖ (I − r̂r̂>)J(r)

d
dt

x. (4.27e)

Note that r̂r̂> is a projection matrix [51]. If this matrix is multiplied from the
right by a non-zero vector v of suitable dimensions, then it orthogonally projects
v onto r̂. Similarly, I − r̂r̂> is also a projection matrix, while it orthogonally
projects the vector v to the orthogonal complement of r̂. Given that r̂ ∈ R2, since Er̂
is orthogonal to r̂, it is now easy to observe that I − r̂r̂> = (Er̂)(Er̂)> = −Er̂r̂>E.
Substituting this equation into (4.25), one obtains (4.26).

Remark 4.23. It is known that the derivative of a unit vector is perpendicular
to itself. Since Er̂ in (4.26) is already perpendicular to r̂, one observes that the
“rotation rate” of the unit vector r̂ is −1

‖r‖ r̂>EJ(r) d
dt x. This “rotation rate” is useful

as it is related to the “course rate” in flight control. /

The following theorem gives the angle control input θu which can steer the
planar orientation of the aircraft to that of the vector field asymptotically.

Theorem 4.24. Let the angle directed from χ̂p to ĥp be denoted by β ∈ (−π, π]. When
the control input in (4.24d) takes the form

θu = τθ(θ̇d − kθ ĥp>Eχ̂p) + θ, (4.28)

θ̇d =
−1
‖χp‖

χ̂p>EJ(χp)ξ̇, (4.29)

where E =

[
0 −1

1 0

]
is the rotation matrix of angle π/2, kθ is a positive gain, ξ̇ =

(ẋ, ẏ, ż) is the aircraft’s actual velocity and J(χp) is the Jacobian matrix of χp with
respect to ξ, then the angle β(t)→ 0 as t→ ∞ whenever β(0) ∈ (−π, π).

Proof. Substituting (4.28) into (4.24d), one has

θ̇ = θ̇d − kθ ĥp>Eχ̂p. (4.30)

First, one can calculate that

d
dt

ĥp = (− sin θ, cos θ)> θ̇ = θ̇Eĥp,

and
d
dt

χ̂p = (−χ̂p>EJ(χp)ξ̇/‖χp‖)Eχ̂p = θ̇dEχ̂p.

Note that
cos β = ĥp>χ̂p.
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Taking the time derivative of both sides of the previous equation, we have:

− sin β · β̇ = (θ̇Eĥp)
>χ̂p + ĥp> θ̇dEχ̂p

= (θ̇d − θ̇)ĥp>Eχ̂p (4.30)
= kθ(ĥp>Eχ̂p)2 = kθ sin2 β,

where the last equality is due to ĥp>Eχ̂p = sin β. Therefore, the dynamics of the
angle β is simply

β̇ = −kθ sin β.

Since β ∈ (−π, π], there are two equilibria β = 0 and β = π in the previous
differential equation. Using linearization [66, Theorem 4.7], one can easily observe
that the equilibrium β = π is unstable while the other equilibrium β = 0 is
asymptotically stable. One also observes that β̇ < 0 when β ∈ (0, π) and
β̇ > 0 when β ∈ (−π, 0). Therefore, whenever β(0) ∈ (−π, π), the trajectory
of the angle β(t) will asymptotically converge to 0, inferring that ĥp → χ̂p

asymptotically as t→ ∞.

Remark 4.25. In view of (4.29), it is required that ‖χp‖ 6= 0. This implies that
pure vertical lifting is not allowed. This condition is satisfied if we employ the
path-following algorithm during the cruise flight of the aircraft; that is, the phase
when the aircraft levels after climbing and before landing. This flight phase
accounts for the majority of the flight time. /

Remark 4.26. To simplify computation, terms related to χp can be replaced by χ

in (4.28) and (4.29). First we define several matrices. Let F =

[
1 0 0

0 1 0

]
, F′ =

EF =

[
0 −1 0

1 0 0

]
, G = F>F =

1 0 0

0 1 0

0 0 0

 and G′ = F>EF =

0 −1 0

1 0 0

0 0 0

.

Therefore, we have χp = Fχ̂, ‖χp‖2 = χ>Gχ
‖χ‖2 , χ̂p = Fv√

χ>Gχ
, and J(χp) = FJ(χ̂) =

F(I − χ̂χ̂>)J(χ)/‖χ‖ (by (4.27d) in Lemma 4.22). Then the simplified forms of
(4.28) and (4.29) are as follows

θu = τθ

(
θ̇d − kθ

ĥp>F′χ√
χ>Gχ

)
+ θ,

θ̇d =
−1

χ>Gχ
χ>G′(I − χ̂χ̂>)J(χ)ξ̇.

/
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Remark 4.27. To improve the convergence speed, the following angle control input
is preferred:

θu = τθ

(
θ̇d − kθ

1− ĥp>χ̂p

ĥp>Eχ̂p

)
+ θ.

Using this control input, it can be easily calculated that θ̇ = θ̇d − kθ
1−ĥp>χ̂p

ĥp>Eχ̂p
, and

hence V̇ = −kθ(1 − ĥp>χ̂p) = −kθV. This shows that ĥp will exponentially
converge to χ̂p. However, note that

1− ĥp>χ̂p

ĥp>Eχ̂p
=

1− cos β

sin β
= tan

β

2
.

Thus when β = π (i.e., ĥp = −χ̂p), the control input becomes infinitely large.
Therefore, this control input is adopted when β(0) 6= π. In addition, similar to
Remark 4.26, the above control input can be simplified to

θu = τθ

(
θ̇d − kθ

√
χ>Gχ− ĥp>Fχ

ĥp>F′χ

)
+ θ.

/

This theorem implies that the planar orientation of the robot ĥp will asymptoti-
cally converge to that of the vector field χ̂p (i.e., ĥp → χ̂p) almost globally with
respect to the initial angle difference β(0). The altitude and airspeed control are
more straightforward. Since the planar orientation of the aircraft ĥp = (ẋ, ẏ)>/s
will approach that of the vector field χ̂p using the control input θu developed in
the previous part, it is desirable that ż equals the third component of the vector
field χ3. However, in view of (4.24a) and (4.24b), since ‖(ẋ, ẏ)‖ = s, ż should be

scaled accordingly to ż = s χ3/
√

χ2
1 + χ2

2. Therefore, it can be computed from
(4.24d) that the altitude control input is

zu = z + τz s χ3/
√

χ2
1 + χ2

2. (4.31)

The idea of scaling is the same as that in [119]. Next, to let the aircraft fly at the
constant nominal speed (cruise speed) s∗, the airspeed control input in (4.24e) is
simply

su = s∗. (4.32)

Therefore, the control inputs θu, zu and su result in the asymptotic convergence
of the orientation difference between the aircraft and the 3D vector field to zero.
If this orientation error is regarded as a vanishing disturbance, then according to
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the local ISS property in Theorem 4.19, the path-following error will also vanish,
and thus the path-following behavior is successfully realized.

4.6 simulations
The first simulation considers a bounded desired path in 3D. It is described by
the intersection of two cylindrical surfaces, φ1 = 0 and φ2 = 0. Specifically,

φ1(ξ) = (x− a)2 + (z− b)2 − r2, φ2(ξ) = y2 + z2 − R2,

where a, b, R, r ∈ R are parameters. We choose R = 2, r = 1, a = 0, b = 1.5. The
desired path is shown in Fig. 4.2. Then the vector field χ(ξ) is readily obtained
according to (4.2) with k1 = k2 = 2. It can be calculated that there are only three
isolated singular points in this vector field (cross marks in Fig. 4.2). The control
inputs in (4.28), (4.31) and (4.32) are used to guide the aircraft to follow this path.
The other parameters are: τz = τθ = τs = 1, kθ = 1 and s∗ = 1. The initial value of
the kinematics model (4.24) is (x(0), y(0), z(0), θ(0), s(0)) = (1.8, 1, 2, π/4, 0). The
aircraft trajectory is the solid line shown in Fig. 4.2, and the error ‖e‖ is plotted
in Fig. 4.3. As can be seen from the figure, the error ‖e‖ is not monotonically
decreasing. The initial increase of the error is due to the fact that the robot cannot
move in any arbitrary direction; it first needs to steer its orientation towards that
of the vector field, resulting in movement further away from the desired path in
the beginning (see the beginning segment of the trajectory in Fig. 4.2). However,
the aircraft successfully follows the desired bounded path as the error eventually
converges to zero.

For the 3D unbounded path, we choose a helix described by

φ1(ξ) = x− cos z, φ2(ξ) = y− sin z.

It can be easily calculated that n1 = (1, 0, sin z)>, n2 = (0, 1,− cos z)> and
τ = n1×n2 = (− sin z, cos z, 1)>. It is interesting to note that there are no singular
points in this case as τ 6= 0 in R3. In addition, since ‖n1‖ ≤

√
2, ‖n2‖ ≤

√
2 and

‖τ‖ =
√

2, the assumptions in Theorem 4.15 are satisfied (globally). Therefore,
the control inputs in (4.28), (4.31) and (4.32) can be used to guide the aircraft to
follow this path. The other parameters are: τz = τθ = τs = 1, k1 = k2 = kθ = 1
and s∗ = 1. The initial value is (x(0), y(0), z(0), θ(0), s(0)) = (0.1, 0,−5, π, 0).
The aircraft’s trajectory is the solid line shown in Fig. 4.4, and the error ‖e‖ is
plotted in Fig. 4.3. As can be seen from the figures, the aircraft successfully
follows the desired unbounded path.
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Figure 4.2: The fixed-wing aircraft successfully follows a 3D bounded desired path. The
actual trajectory and the desired path overlaps. The arrows indicate the
orientation of the aircraft.
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Figure 4.3: The path-following errors for the first simulation.
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Figure 4.4: The trajectory of the fixed-wing aircraft (the solid line) gradually overlaps
the 3D unbounded desired path (the dashed line). The arrows indicate the
orientation of the aircraft.
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Figure 4.5: The path-following errors for the second simulation.
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4.7 conclusions
We have provided rigorous theoretical results for path-following control using a
3D vector field. Crucial assumptions are presented and elaborated. Based on this,
we have shown the asymptotic and exponential convergence of the path-following
error for both bounded and unbounded desired paths. Furthermore, the local
ISS property of the path-following error dynamics is proved, which justifies the
control algorithm designed for a nonholonomic model: a fixed-wing aircraft.
Our vector field method is flexible in the sense that it is valid for any general
desired path that is sufficiently smooth, and its extension to higher-dimension is
straightforward.





5 TO P O LO G I C A L A N A LY S I S O F
V E C TO R - F I E L D G U I D E D PAT H
F O L LO W I N G O N M A N I F O L D S

A path-following control algorithm enables a system’s trajectories under
its guidance to converge to and evolve along a given geometric desired path.
There exist various such algorithms, but many of them can only guarantee
local convergence to the desired path in its neighborhood. In contrast, the
control algorithms using a well-designed guiding vector field can ensure
almost global convergence of trajectories to the desired path; here, “almost”
means that in some cases, a measure-zero set of trajectories converge to the
singular set where the vector field becomes zero (with all other trajectories
converging to the desired path). In this chapter, we first generalize the
guiding vector field from the Euclidean space to a general smooth Riemannian
manifold. This generalization can deal with path-following in some abstract
configuration space (such as robot arm joint space). Then we show several
theoretical results from a topological viewpoint. Specifically, we are motivated
by the observation that singular points of the guiding vector field exist in
many examples where the desired path is homeomorphic to the unit circle,
but it is unknown whether the existence of singular points always holds
in general (i.e., is inherent in the topology of the desired path). In the n-
dimensional Euclidean space, we provide an affirmative answer, and conclude
that it is not possible to guarantee global convergence to desired paths that
are homeomorphic to the unit circle. Furthermore, we show that there always
exist non-path-converging trajectories (i.e., trajectories that do not converge to the
desired path) starting from the boundary of a ball containing the desired path
in an n-dimensional Euclidean space where n ≥ 3. Examples are provided to
illustrate the theoretical results.

This chapter is based on

• W. Yao, B. Lin, B. D. O. Anderson, and M. Cao, “Topological analysis of vector-field guided
path following on manifolds,” IEEE Transactions on Automatic Control (TAC), 2021, Conditionally
accepted.
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5.1 introduction
Among various path-following algorithms, the vector-field guided path-following
algorithms have been investigated extensively [50], [65], [72], [104], [172]. In these
algorithms, the desired path is usually implicitly or explicitly assumed to be
a sufficiently smooth one-dimensional connected submanifold in Rn for regularity
reasons. Thus, desired paths can be conveniently classified into two categories:
those homeomorphic to the unit circle S1 if they are compact and those home-
omorphic to the real line R otherwise [76, Theorem 5.27]. These algorithms
utilize a sufficiently smooth vector field of which the integral curves are proved
to converge to the desired path at least asymptotically. Moreover, once any point
of a trajectory is on the desired path, the integral curves will keep evolving on
the desired path [50], [74].

Note that most, if not all, of the studies assume that the Euclidean space Rn is
the configuration space of the considered ordinary differential equation where
the right-hand side is the designed vector field. Although the explicit expressions
of vector fields χ vary in different studies (c.f. [44], [50], [63], [72], [74], [81], [89],
[172]), they generally consist of two components: a convergence component and a
propagation component. The convergence component enables the integral curves of
the vector field to approach the desired path, while the propagation component,
orthogonal to the convergence component, provides a tangential direction to the
desired path, and thus helps the integral curves propagate along the desired
path. The two-component structure of the vector field is intuitive and effective in
solving the path-following problem. In [50], a time-varying component is added
to the vector field to deal with a time-varying desired path.

There are several advantages of the vector-field guided path-following algo-
rithms. One of them is the removal of the condition requiring the initial point
to be sufficiently close to the desired path, as otherwise commonly required by
algorithms such as LOS [40], [93], [122], among others [137]. In addition, the
vector-field guided algorithms are shown to achieve the highest path-following
accuracy with the least control efforts among several algorithms in benchmark
tests to follow a circle and a straight line [137]. However, their major drawback
is the existence of singular points where the vector field becomes zero, and the
consequences are: i) the integral curves of the vector field might only be extended
in a finite time interval [63]; ii) normalization of the vector field, which is common
in many practical applications [63], [156], at the singular point is not well defined;
iii) if there are singular points, then the algorithm does not have the desirable
property of global convergence to the desired path from any initial conditions,
and the analysis becomes more difficult. Therefore, some existing studies either
impose conservative assumptions ruling out attractive singular points or avoid
providing detailed analysis for singular points [50], [72], [81], [98], [119]. The
study in [63] does not use these assumptions and shows that the integral curves
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of a 2D guiding vector field either converge to the desired path or the singular
set, which consists of all singular points of the vector field. This dichotomy
convergence result has been extended to a 3D vector field in Chapter 4. However,
it is unknown whether this dichotomy convergence property holds for guiding
vector fields defined on general manifolds, including Rm for m > 3.

In the literature and in practice, vector-field guided path-following examples
are typically illustrated with a desired path homeomorphic to the unit circle,
such as a circle, an ellipse or a Cassini oval [63], [74]. In these examples, singular
points of the guiding vector field exist, which implies that global convergence
to the desired path cannot be guaranteed. Therefore, a natural question arises:
do singular points of the guiding vector field always exist when the desired path is
homeomorphic to the unit circle, and thus global convergence to the desired path is
not guaranteed? This question is simple when the configuration space is the
two-dimensional Euclidean space (i.e., M = R2). Since the desired path is a
closed orbit by construction, the Poincaré-Bendixson theorem (see Theorem 2.15)
concludes that there is at least one singular point of the vector field1 in the
region enclosed by the desired path. Therefore, once a trajectory starts from the
singular point, it stays there and thus global convergence to the desired path is
not possible. However, the Poincaré-Bendixson theorem is only applicable for the
planar case R2, while the conclusion for the higher-dimensional case Rn, where
n > 2, and general manifolds is still untreated.

5.1.1 Contributions

This chapter extends the vector-field guided path-following algorithms to a
general smooth Riemannian manifold M, which is the first contribution (see
Sections 5.2.1 and 5.3). One reason to consider smooth manifolds M rather
than the Euclidean space is the immediate relevance to potential applications,
especially when one deals with mechanical systems [19]. For example, the control
of revolute joint angles of a two-joint robot arm corresponds to the case where
the manifold is a torus (i.e.,M = T2 = S1 × S1) in the joint space (see the fourth
example in Section 5.6). We show that global convergence from any point in the
torus T2 to the desired path P ⊆ T2 homeomorphic to the unit circle S1 is not
possible, but this issue can be solved by lifting the torus T2 to its covering space
R2 (see Section 5.6).

The second contribution of this study arises from the analysis related to con-
vergence, stability and attractiveness for the vector field defined on general
manifolds (see Section 5.4). Specifically, we show that the dichotomy conver-
gence property still holds for the vector-field guided path-following algorithms
defined on the general smooth manifoldM. This means that trajectories either

1 Here, a singular point of the vector field happens to be an equilibrium point of the ordinary differential
equation where the right-hand side is the vector field.
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converge to the desired path onM or the singular set. This result is not only an
extension of [63] which only considers R2, but also plays an important role in the
subsequent theoretical development (e.g., Corollary 5.17, Lemma 5.18, Corollary
5.19, Theorem 5.27). We also prove, under some mild conditions, the asymptotic
stability of the desired path P (i.e., Corollary 5.17) and the non-attractiveness2

of the singular set C (i.e., Corollary 5.19), which are highly desirable properties
in any path-following algorithms. However, we show by an example that these
two properties alone cannot guarantee the almost-global convergence property of
the desired path (i.e., Example 5.22). All such analysis motivates the subsequent
topological analysis.

The third contribution is to answer with respect to initial conditions the ques-
tion proposed above regarding the existence of singular points and the possibility
of global convergence (see Section 5.5). We first revisit a topological result (i.e.,
Lemma 5.23) revealing the relationship between a compact asymptotically stable
embedded submanifold and its domain of attraction, and provide some interpre-
tations along with an outline of our independent proof of this result (i.e., Remark
5.24). This reveals two essential elements behind the result: the regularity of the
desired path (a compact asymptotically stable embedded submanifold) and the
continuity of the first hitting time. Notably, we show that when the configuration
space is the n-dimensional Euclidean space (i.e.,M = Rn) and the desired path
is homeomorphic to the unit circle, singular points of the vector field always exist,
and it is impossible to enable trajectories to converge globally to the desired path
from all initial conditions in Rn (i.e., Theorem 5.27).

This impossibility result further motivates us to show the existence of non-
path-converging trajectories (i.e., trajectories that do not converge to the desired
path), which is the fourth contribution. It turns out that every ball containing
the desired path has at least one non-path-converging trajectory starting from its
boundary in Rn for n ≥ 3 (i.e., Theorem 5.30). This topological result is related
to the impossibility of global convergence to the destination point of integral
curves of a feedback motion planner [70, Chapter 8] in an obstacle-populated
environment [68] (see Conjectures 5.33 and 5.34).

5.1.2 Chapter structure

Section 5.2 introduces the guiding vector field on a smooth n-dimensional Rie-
mannian manifold for path following, and a concrete computation procedure of
the vector field defined on manifolds is presented in Section 5.3. Section 5.4 elab-
orates on the preliminary analysis of the convergence issues. The main results are
given in Section 5.5 regarding the existence of singular points, global convergence

2 A formal definition is provided subsequently, but note that it is possible for some trajectories starting
outside a non-attractive set to approach that set in the limit, a fact which is perhaps counter-intuitive.
Consider in R2 the system ẋ1 = x1, ẋ2 = −x2, with the origin as the singular set.
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to the desired path and the existence of non-path-converging trajectories. Several
examples are provided in Section 5.6 to verify the theoretical results.

In this chapter, unless otherwise specified, all the manifolds have no boundaries.

5.2 guiding vector field for path following
In the literature of path-following problems using a guiding vector field, usually
the guiding vector field is defined on the Euclidean space Rn. In this section, we
generalize the discussion to Riemannian manifolds and introduce notions (e.g.,
the distance) as generalized counterparts of those on the Euclidean space Rn for
the subsequent analysis. In other words, given a sufficiently smooth guiding
vector field χ :M→ TM, whereM is a Riemannian manifold that also satisfies
some regularity conditions presented later and TM is the tangent bundle [77],
we investigate the solutions to the following autonomous ordinary differential
equation:

ξ̇(t) = χ(ξ(t)), (5.1)

where ξ(t) ∈ M usually corresponds to a physical quantity such as the position
of a mobile robot, and χ(ξ(t)) corresponds to the desired velocity of the robot.
The manifoldM is called the configuration space. The guiding vector field defined
on a Riemannian manifold is introduced in Section 5.2.1 and some standard
assumptions are presented in Section 5.2.2.

5.2.1 Guiding vector fields on Riemannian manifolds

We introduce some concepts first. A Riemannian manifold is denoted by (M, g),
where g is the Riemannian metric [78]. The distance between a point p ∈ M
and a submanifold N ⊆M is defined by dist(p,N ) = dist(N , p) := inf{d(p, q) :
q ∈ N}, where d(·, ·) is the Riemannian distance of two points in M [78, p.
36]. The distance between N and another submanifold N ′ ⊆ M is defined by
dist(N ,N ′) = dist(N ′,N ) := inf{d(r, q) : r ∈ N , q ∈ N ′}. The tangent space of
M at a point p ∈ M is denoted by TpM, and the length or norm of a tangent
vector v ∈ TpM is denoted by ‖v‖ and defined by ‖v‖ = 〈v, v〉1/2

g , where 〈·, ·〉g
is the inner product of tangent vectors in TpM. As a special case, if M = Rn,
then the Riemannian metric is replaced by the canonical Riemannian metric (i.e.,
Euclidean metric) on Rn, the Riemannian distance by the Euclidean distance and
the inner product by the dot product.

Suppose the configuration space of (5.1) is an n-dimensional smooth Rieman-
nian manifold (M, g), which is oriented, connected and complete [77, p. 340].
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Suppose a desired path P ⊆ M is described by the intersection of (n − 1)
zero-level sets; that is,

P = {ξ ∈ M : φi(ξ) = 0, i = 1, . . . , n− 1}, (5.2)

where φi : M → R, i = 1, . . . , n− 1, called level functions for convenience, are
of differentiability class C2. Such a geometric description of the desired path
without explicit parametric form is common in the literature whenM = Rn [24],
[50], [89], [119], [157]. However, the set description of P might not be desirable
if no further restrictions are imposed; e.g., the set P might be disconnected
or even empty. Therefore, one usually needs to assume that P is a connected
one-dimensional submanifold inM such that it corresponds to a desired path
in practice. One advantage of the level-set description (5.2) is that the distance
of a point ξ ∈ M to the desired path P can be approximated by the value of
‖(φ1, . . . , φn−1)‖ under some mild assumptions to be proposed later. Thus one
could avoid the computation of the distance dist(ξ,P), which is difficult even if
the desired path is as standard as an ellipse in R2.

For simplicity, we first briefly introduce the guiding vector field on Rn, and later
extend it to the general manifoldM. The n-dimensional vector field χ : Rn → Rn

is (see Chapter 9):

χ(ξ) = ∧(∇φ1(ξ), . . . ,∇φn−1(ξ))−
n−1

∑
i=1

kiφi(ξ)∇φi(ξ), (5.3)

for ξ ∈ Rn, where ∇φi : Rn → Rn is the gradient of φi, ki > 0 are constant
gains, and ∧ : Rn × · · · ×Rn︸ ︷︷ ︸

n−1

→ Rn is the wedge product [77, p. 355]. In the

Euclidean space, the wedge product can be calculated as follows: suppose we have
vectors pi = (pi1, · · · , pin)

> ∈ Rn, i = 1, . . . , n− 1, then the k-th component of
∧(p1, . . . , pn−1) is (−1)k−1 multiplying the determinant of the submatrix obtained
by deleting the k-th column of the (n− 1) by n matrix which is formed by placing
the vectors p1

>, . . . , pn−1
> row by row. Note that ∧(∇φ1(ξ), . . . ,∇φn−1(ξ)) is

orthogonal to each of the gradients ∇φi(ξ) for i = 1, . . . , n− 1 [45, Proposition
7.2.1].

We explain the physical interpretation of the vector field in (5.3). As mentioned
before, the vector field generally consists of two terms: the propagation term and
the convergence term. The propagation term ∧(∇φ1, . . . ,∇φn−1) is orthogonal to
each gradient vector ∇φi, and thus is tangent to each c-level surface described by
{p ∈ Rn : φi(p) = c}. This enables the trajectory to move along the intersection of
these level surfaces, and especially move along the desired path when c = 0. The
forward or backward direction of the movement with regard to the desired path
can be changed by switching the order of any two of the gradient vectors in the
wedge product. The convergence term −∑n−1

i=1 kiφi∇φi is a linear combination of
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the gradient vectors, with the state dependent “weight” −kiφi. Thus it provides a
direction towards the intersection of the zero-level surfaces, which is the desired
path P .

Now we show how to generalize the former discussion from the Euclidean
space Rn to the Riemannian manifold M. Specifically, the gradient ∇φi(ξ)
and the term ∧(∇φ1(ξ), . . . ,∇φn−1(ξ)) for ξ ∈ Rn will be replaced by their
counterparts denoted by grad φi(ξ) and ⊥φ(ξ) respectively for ξ ∈ M. The
Riemannian gradient grad φi(ξ) ∈ TξM is the tangent vector to M at ξ ∈ M
such that for all tangent vectors v ∈ TξM, there holds

〈 grad φi(ξ), v〉g = dφi
∣∣
ξ
(v), (5.4)

where dφi
∣∣
ξ

: TξM → R is the differential of φi at ξ ∈ M [77, p. 281]. The
other term ⊥φ(ξ) ∈ TξM is the tangent vector such that for all tangent vectors
v ∈ TξM, there holds

〈⊥φ(ξ), v〉g = ωg( grad φ1(ξ), . . . , grad φn−1(ξ), v), (5.5)

where ωg is the volume form3 associated withM [78, p. 30]. The existence and
uniqueness of grad φi(ξ) and ⊥φ(ξ) are guaranteed by the Riesz representation
theorem [7, Theorem 6.42]. The calculations of these two terms are deferred until
Section 5.3. Therefore, the guiding vector field defined onM becomes

χ(ξ) = ⊥φ(ξ)−
n−1

∑
i=1

kiφi(ξ) grad φi(ξ). (5.6)

with ki > 0. In addition, as in the Euclidean case, the term ⊥φ(ξ) is also
orthogonal to each of the gradients grad φi(ξ), as formally stated in the following
lemma:

Lemma 5.1 (Orthogonality). With definitions as above, there holds

〈⊥φ(ξ), grad φi(ξ)〉g = 0

for i = 1, . . . , n− 1 and ξ ∈ M.

Proof. This is an immediate consequence of the skew-symmetric property of the
volume form ωg.

Remark 5.2. In view of (5.4) and (5.5), although different Riemannian metrics
would result in different gradients grad φi(·) and orthogonal terms ⊥φ(·), they
would not affect the convergence properties of the guiding vector field (5.6).
Nevertheless, a natural choice of the Riemannian metric is the one determined by
the kinetic energy of a robot. /

3 The volume form exists since the manifoldM is assumed to be oriented.
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We define e :M→ Rn−1 by stacking φi; that is,

e(ξ) = (φ1(ξ), · · · , φn−1(ξ))
>. (5.7)

Using this notation, the desired path is equivalent to

P = {ξ ∈ M : e(ξ) = 0}. (5.8)

This definition of the desired path suggests that e(ξ) can be taken as the path-
following error between the point ξ ∈ M and the desired path P . The singular set
is defined by

C = {ξ ∈ M : χ(ξ) = 0}

=

{
ξ ∈ M : ⊥φ(ξ) =

n−1

∑
i=1

kiφi(ξ) grad φi(ξ) = 0

}
,

(5.9)

with the second equality following from Lemma 5.1. Note that the singular
set C may be empty or nonempty. To illustrate this, we provide two examples
respectively below.

Example 5.3 (Non-empty C). Consider that the desired path is a 2D unit circle
in the Euclidean space R2 described by φ(x, y) = x2 + y2 − 1 = 0; then one can
obtain the vector field by (5.3) and calculate that the singular set C is a singleton
consisting of the origin; that is, C = {(0, 0)}. /

Example 5.4 (Empty C). A simple example is a straight line in the Euclidean
space R2 described by φ(x, y) = y = 0, which is the X-axis. One can calculate
that the propagation term is a non-zero constant vector (i.e., E∇φ = (−1, 0)>,
where E =

[ 0 −1
1 0

]
is the 90◦ rotation matrix). Due to the orthogonality of the

propagation term and the convergence term of (5.3), this implies that the vector
field χ(x, y) 6= 0 in R2, and thus the singular set C is empty. /

Whether or not the singular set is empty may not be straightforward to deter-
mine, since one needs to obtain the analytic expression of the vector field and
check if any point on the manifold renders it zero.

5.2.2 Standing assumptions

In the remainder of the chapter, the following assumptions will be made:

Assumption 5.5. There are no singular points on the desired path. More precisely,
C is empty or otherwise there holds dist(C,P) > 0.

Assumption 5.6. For any given constant κ > 0, there holds inf{||e(ξ)|| :
dist(ξ,P) ≥ κ} > 0.
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Assumption 5.5 ensures the “regularity” of the desired path P stated in Lemma
5.7 below.

Lemma 5.7 (Regularity of P). The zero vector 0 ∈ Rn−1 is a regular value of the map
e in (5.7), and hence the desired path P is a C2 (properly) embedded submanifold inM.

Proof. This is a direct application of the regular level set theorem [77, Corollary
5.14].

Assumption 5.6 implies that as the norm of the path-following error ‖e(ξ)‖
approaches zero, the trajectory ξ(t) approaches the desired path P (see Corollary
3.13). These assumptions are vital in the sense that if either of these assumptions
is not satisfied, then different choices of level functions φi for the same desired
path may lead to opposite convergence results, as the next example shows.

Example 5.8 (Opposite convergence results). We consider a straight line in the
3D Euclidean space R3. One can choose the level functions φi, i = 1, 2, as
φ1(x, y, z) = y, φ2(x, y, z) = z, and the integral curves of the corresponding vector
field (5.3) converge to the desired straight line (see Fig. 5.1a). Another design
of level functions φi is φ1(x, y, z) = ye−x, φ2(x, y, z) = z. In this case, however,
as shown in Fig. 5.1b, the trajectory diverges from the desired path, although
the norm of the path-following error ‖e‖ for this case is also approaching zero
along the trajectory (see Fig. 5.1c). The reason is that the second case violates
Assumption 5.6. This can be observed by considering a straight line L parallel
to the desired path but keeping a positive distance dist(L,P) > 0. For example,
let L := {(x, 1, 0) : x ∈ R}. Then the fact that inf{‖e(ξ)‖ : ξ ∈ L} = 0 violates
Assumption 5.6. /

5.3 computation of guiding vector fields on
manifolds

The definitions of the gradient grad φi in (5.4) and the orthogonal term ⊥φ in
(5.5) for the guiding vector field on the manifold M are too abstract for direct
computations. In this section, we present some general methods to compute
these terms and hence the guiding vector field in coordinates. To this end, we
suppose that the manifold M considered in (5.2) is an n-dimensional smooth
submanifold embedded in the Euclidean space Rn+k, where n is the dimension
of the manifold M and k is some positive integer4, and the manifold M is a
regular level set of a smooth function F : Rn+k → Rk. Specifically, we assume

M = F−1(a) = {x ∈ Rn+k : fi(x) = ai, i = 1, . . . , k}, (5.10)

4 This is always possible according to the Whitney embedding theorem [77, Theorem 6.15], which
concludes that every smooth n-manifold admits a proper smooth embedding into R2n+1.
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Figure 5.1: The same desired path (X-axis) with different level functions φi, i = 1, 2.
Magenta lines are trajectories, starting from the positions represented by blue
points. (a) The trajectory converges to the desired path. (b) The trajectory
diverges from the desired path. (c) Both of the norms of the path-following
error converge to zero.

where fi : Rn+k → R are smooth component functions of F and a = (a1, . . . , ak) ∈
Rk is a regular value of F. For example, if the manifold M is the sphere S2,
then it is a two-dimensional manifold embedded in R3 and can be described by
S2 = {x = (x1, x2, x3) ∈ R3 : f1(x) = x2

1 + x2
2 + x2

3 = 1}. In this case, n = 2, k = 1,
F = f1 and a = 1 is a regular value of F. Similar examples can be found for some
other common manifolds, such as the special orthogonal group SO(3) and the
torus T = S1 × S1.

For notational simplicity, let m := n + k. In addition, to distinguish the
Riemannian metrics in the Euclidean space Rm and in the manifoldM, we adopt
the following notations. For x ∈ Rm, the Riemannian metric in the Euclidean
space Rm is the canonical one, denoted by 〈·, ·〉Rm

x : TxRm × TxRm → R, while
for y ∈ M, the Riemannian metric is denoted by 〈·, ·〉My : TyM× TyM→ R. Let
φ̃i : U → R, where U ⊆ Rm is a neighborhood ofM ⊆ Rm, be an extension of
the level function φi :M→ R in (5.2) [77, Lemma 5.34]; that is, the restriction of
φ̃i onM is φi, or φ̃i

∣∣
M = φi.
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The following result shows that the gradient defined on the manifoldM is just
the orthogonal projection of the “usual” gradient in the Euclidean space onto the
tangent space to the manifoldM at some point.

Proposition 5.9. For x ∈ M ⊆ Rm, define the orthogonal projection function PrTxM :
TxRm → TxM. Then we have

grad φi(x) = PrTxM(∇φ̃i(x)), (5.11)

where grad φi(x) ∈ TxM and ∇φ̃i(x) ∈ TxRm. In particular,

grad φi(x) = ∇φ̃i(x)−
k

∑
j=1

〈∇φ̃i(x),∇ f j(x)〉Rm
x

‖∇ f j(x)‖2 ∇ f j(x), (5.12)

where f j, j = 1, . . . , k, are functions in (5.10).

Proof. The equation (5.11) is a standard result (see, e.g., [55, pp. 360-362]).
Since the manifold M is described by (5.10), we have that (TxM)⊥ =
span(∇ f1(x), . . . ,∇ fk(x)), hence (5.12).

Using these computable gradients grad φi, i = 1, . . . , n− 1, as in Proposition
5.9, we can now derive a computable form for the orthogonal term ⊥φ in (5.5).
Before that, recall that for pi = (pi1, pi2, pi3)

> ∈ R3, i = 1, 2, the cross product
p1 × p2 is calculated by the following intuitive formal expression involving the
matrix determinant [42, pp. 241-242]:

p1 × p2 =

∣∣∣∣∣∣∣∣
b1 b2 b3

p11 p12 p13

p21 p22 p23

∣∣∣∣∣∣∣∣ (5.13)

=

∣∣∣∣∣p12 p13

p22 p23

∣∣∣∣∣ b1 −
∣∣∣∣∣p11 p13

p21 p23

∣∣∣∣∣ b2 +

∣∣∣∣∣p11 p12

p21 p22

∣∣∣∣∣ b3 (5.14)

=

∣∣∣∣∣∣∣∣
p11 p21 b1

p12 p22 b2

p13 p23 b3

∣∣∣∣∣∣∣∣ , (5.15)

where bj ∈ R3, j = 1, 2, 3, are the standard basis vectors and | · | is the determinant
of a square matrix. Equation (5.14) is obtained using the cofactor expansion along
the first row of (5.13), where in evaluating the determinant, the bi should initially
be regarded as scalars, and in the final evaluation replaced by the basis vectors
which they are. This formal expression can be naturally extended to Euclidean
spaces of any dimension, a fact utilized below.
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Proposition 5.10. For x ∈ M ⊆ Rm, the orthogonal term ⊥φ defined in (5.5) can be
computed by the following formal form:

⊥φ(x) = det

∇ f1(x), · · · ,∇ fk(x), grad φ1(x), · · · , grad φn−1(x),

b1
...

bm

 , (5.16)

where bi ∈ Rm, i = 1, . . . , m, are standard basis vectors, and grad φi, i = 1, . . . , n− 1,
are calculated from Proposition 5.9.

Proof. We first consider the case for the Euclidean space Rm, and then extend
to that for the manifold M. For any x ∈ Rm, we can pick a volume form
ωx : TxRm × · · · × TxRm︸ ︷︷ ︸

m

→ R, which is a skew-symmetric and non-degenerate

linear function, such that ωx is smooth with respect to x. Note that the general
form of ωx is ωx = c(x) · dx1 ∧ · · · ∧ dxm, where c : Rm → R is a non-zero
and smooth function. Specifically, for the column vectors ai = (ai,1, . . . , ai,m)

> ∈
Rm, i = 1, . . . , m, it holds that

dx1 ∧ · · · ∧ dxm (a1, . . . , am) = det


a1,1 · · · a1,m

...
. . .

...

am,1 · · · am,m

 . (5.17)

Let ωx
(
a1, . . . , am

)
:= dx1 ∧ · · · ∧ dxm (a1, . . . , am). We can calculate the volume

form on the manifoldM, denoted by ωM : TxM× · · · × TxM︸ ︷︷ ︸
n

→ R, as follows:

ωMx (v1, . . . , vn) := ωx (∇ f1(x), · · · ,∇ fk(x), v1, . . . , vn)

= det [∇ f1(x), · · · ,∇ fk(x), v1, . . . , vn] ,

where vj ∈ TxM, j = 1, . . . , n. Hence, by (5.5), we have

〈⊥φ(ξ), ·〉Mx = ωMx ( grad φ1(x), . . . , grad φn−1(x), ·) = 〈4, ·〉Mx ,

where 4 is the right-hand side of (5.16). So (5.16) holds.

The above results serve collectively as a general procedure to compute the
guiding vector field on M. Note that in some particular examples, one might
not necessarily need to compute all quantities appearing in these propositions.
For example, (5.12) is not necessary if the tangent space TxM is explicitly known
(e.g., the tangent space of SO(3)).
Example 5.11 (Guiding vector field on S2). Suppose the sphere S2 is the manifold
M on which the guiding vector field is defined. It is a two-dimensional manifold
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Figure 5.2: The guiding vector field χ on the sphere M = S2 in Example 5.11. The red
dashed line is the desired path P , which is a circle on the sphere.

that can be naturally embedded in the Euclidean space R3, and then (5.10)
becomes

M = S2 = {(x, y, z) ∈ R3 : f1(x, y, z) = x2 + y2 + z2 = 1}.

The desired path P ⊆ M is the unit circle with z = 0. Therefore, we can
let φ̃1 : R3 → R be defined by φ̃1(x, y, z) = z, and then φ1 : M → R is
just φ1 = φ̃1

∣∣
M in (5.2). We can calculate the gradient term grad φ1 and the

orthogonal term ⊥φ by Proposition 5.9 and Proposition 5.10 respectively. First,
we have ∇φ̃1 = (0, 0, 1)> and ∇ f1 = (2x, 2y, 2z)>. For any point ξ ∈ M, it
follows from (5.12) that

grad φ1(ξ) = ∇φ̃1(ξ)−
〈∇φ̃1(ξ),∇ f1(ξ)〉
‖∇ f1(ξ)‖2 ∇ f1(ξ) =

 −xz

−yz

1− z2

 ,

and from (5.16) that

⊥φ(ξ) = det

∇ f1(ξ), grad φ1(ξ),
b1

b2

b3

 =

 2y

−2x

0

 .
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Finally, the “computable” guiding vector field on the sphere is obtained by
putting these two terms into (5.6) as follows:

χ(ξ) = ⊥φ(ξ)− k1φ1(ξ) grad φ1(ξ) =

 2y + k1xz2

−2x + k1yz2

k1z(z2 − 1)

 (5.18)

for any point ξ = (x, y, z) ∈ S2 ⊆ R3. The vector field is shown in Fig. 5.2.
Interestingly, there are two singular points in this vector field (5.18): the north
pole and the south pole (i.e., (0, 0,±1)). However, as shown in Example 5.3, if we
consider the Euclidean spaceM = R2, then there is only one singular point: the
origin (0, 0). Similarly, if we consider the 3D Euclidean spaceM = R3, and use
the functions φ1(x, y, z) = x2 + y2 − 1 = 0 and φ2(x, y, z) = z = 0 to characterize
the same unit circle as the desired path, there is now only one singular point
and it is at the origin (0, 0, 0). This example shows that corresponding to the
same desired path, guiding vector fields (and singular sets) defined on different
manifolds are possibly quite different. /

5.4 dichotomy convergence and stability anal-
ysis

It is important to analyze the convergence results of the integral curves of the
vector field (5.6); that is, the trajectories of the differential equation (5.1), where the
vector field χ(·) is defined in (5.6). It turns out that the dichotomy convergence
property holds not only for the vector field on the Euclidean space Rn, n ≥ 2 (see
Chapter 4), but also for that on the Riemannian manifoldM. First we define the
function V :M→ R as

V(ξ) = e>(ξ)Ke(ξ), (5.19)

where K := diag{k1, . . . , kn−1} is the diagonal matrix with all the positive gains
ki, i = 1, . . . , n− 1. The function V is non-negative and attains zero if and only
if ξ ∈ P . This function is utilized as a Lyapunov-like function in the analysis
subsequently. We assume in this chapter until further notice that the desired path
P is homeomorphic to the unit circle (hence compact):

Assumption 5.12. The desired path P is homeomorphic to the unit circle S1 (i.e.,
P ≈ S1).

Then we can choose r > 0 sufficiently large such that the open ball Br :=
{x ∈ M : ‖x‖ < r} contains the desired path P (i.e., P ∈ intBr). Let α′ :=
minp∈∂Br V(p) > 0, where the minimum is attained on the compact sphere ∂Br
(i.e., the boundary of the ball Br), and it is positive since ∂Br ∩ P = ∅. We can
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choose a positive constant α such that 0 < α < α′, and the set Ωα defined below
is compact:

Ωα := {ξ ∈ Br : V(ξ) ≤ α}. (5.20)

Note that P ⊆ Ωα for any α > 0. Now we can present the dichotomy convergence
result as follows:

Theorem 5.13 (Dichotomy convergence). Consider the autonomous system (5.1),
where the vector field χ : M→ TM is in (5.6). Then the compact set Ωα in (5.20) is
positively invariant. In addition, every trajectory of (5.1) starting from Ωα converges to
either the desired path P , or the singular set C as t→ ∞ (i.e., the dichotomy convergence
property holds).

Proof. The proof for a special caseM = R3 (but easily generalizable toM = Rn)
is presented in Chapter 4. It can be further generalized to the case of a Riemannian
manifoldM by modifying the involved calculations related to the Riemannian
metric. First note that

〈 grad φi, χ〉g
(5.6)
=

〈
grad φi, ⊥φ(ξ)−

n−1

∑
j=1

k jφj(ξ) grad φj(ξ)

〉
g

=

〈
grad φi,−

n−1

∑
j=1

k jφj(ξ) grad φj(ξ)

〉
g

,

(5.21)

for i = 1, . . . , n − 1, where we have used the orthogonality property (Lemma
5.1) in the last equation. Now we can calculate the time derivative of the path-
following error e:

d
dt

e(ξ(t)) =
d
dt


φ1(ξ(t))

...

φn−1(ξ(t))

 =


〈 grad φ1, χ〉g

...

〈 grad φn−1, χ〉g


(5.21)
=


〈 grad φ1,−∑n−1

j=1 k jφj grad φj〉g
...

〈 grad φn−1,−∑n−1
j=1 k jφj grad φj〉g

 .

(5.22)
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Therefore, the time derivative of the Lyapunov function (5.19) is

d
dt

V = 2
(

d
dt

e
)>

Ke

(5.22)
= 2


〈 grad φ1,−∑n−1

j=1 k jφj grad φj〉g
...

〈 grad φn−1,−∑n−1
j=1 k jφj grad φj〉g


> 

k1φ1
...

kn−1φn−1


= −2

〈
n−1

∑
j=1

k jφj grad φj,
n−1

∑
j=1

k jφj grad φj

〉
g

≤ 0.

(5.23)

Due to the negative semi-definiteness of (5.23), the compact set Ωα is positively
invariant. Next we will use the the LaSalle’s invariance principle (Theorem 2.6)
to conclude the convergence results. First, we have the following equivalent sets

I :=
{

ξ ∈ M :
d
dt

V(ξ) = 0
}

=

{
ξ ∈ M :

n−1

∑
j=1

k jφj(ξ) grad φj(ξ) = 0

}
= P ∪ C.

The last equality is justified as follows. If a point p ∈ P ∪ C, then it is obvious that
p is contained in the set on the left-hand side of the equality, and thus P ∪ C is a
subset of the set on the left-hand side. If a point p is in the set of the left-hand side,
then we have ∑n−1

j=1 k jφj(p) grad φj(p) = 0. This implies that either all gradients
grad φj(p) are linearly independent and φj(p) = 0 for all j = 1, . . . , n− 1, or the
gradients grad φj(p) are linearly dependent and hence ⊥φ(p) = 0. In the former
case, p ∈ P , and in the latter case, p ∈ C. Therefore, the set on the left-hand side
is a subset of P ∪ C. Combining these two arguments, the last equality holds.

It is easy to see that the largest invariant set in I ∩Ωα is itself: every trajectory
of (5.1) starting from C ∩Ωα will remain in C ∩Ωα because C ∩Ωα consists of
equilibrium points of (5.1), and every trajectory of (5.1) starting from P ∩Ωα = P
will remain in P because the guiding vector field in (5.6) degenerates to χ(ξ) =
⊥φ(ξ) on P . Therefore, according to the LaSalle’s invariance principle (Theorem
2.6), all trajectories starting from the compact and positively invariant set Ωα will
converge to the largest invariant set I ∩Ωα. By Assumption 5.5, this implies that
trajectories either converge to the desired path P or the singular set C, hence the
dichotomy convergence property still holds.

Remark 5.14. This Lemma relies on LaSalle’s invariance principle for autonomous
systems (Theorem 2.6), but to partially extend the result for non-autonomous
systems, we can utilize the invariance principle for (non-autonomous) peri-
odic systems [124, Theorem 5.26], [54, Theorem 55.1]. Consider the Euclidean
space Rn. We can modify the vector field (5.3) to χ = ∧(∇φ1, . . . ,∇φn−1) −
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∑n−1
i=1 ki(t)φi(In − Pi)∇φi, where the matrix Pi is the projector in Rn onto the sub-

space spanned by ∇φj, ∀j 6= i, and ki(t), i = 1, . . . , n− 1, are piecewise constant
and periodic. Then Theorem 5.13 is still applicable in this case. However, it is
generally difficult to conduct topological analysis on non-autonomous systems,
and thus we restrict to autonomous systems with the vector field (5.6) for the
subsequent analysis. /

We have shown by Theorem 5.13 that some undesirable phenomena in nonlinear
systems, such as chaos, finite-time escape, cannot occur for the system (5.1) with
the vector field (5.6). Now we show another desirable property: the desired path
P is attractive, while the singular set C is not.

Definition 5.15. A nonempty closed positively invariant set A ⊆M is attractive
with respect to (5.1), if there exists an open neighborhood U of A such that every
trajectory ξ(t) of (5.1) that starts within U (i.e., ξ(0) ∈ U ) converges (topologically)
to A in the sense that for any neighborhood V of A, there exists a T > 0, such
that ξ(t ≥ T) ⊆ V when ξ(0) ∈ U (this implies that dist(ξ(t),A)→ 0 as t→ ∞).
If the set A is not attractive, then it is called non-attractive. The set of all points
for which trajectories start from and converge (topologically) to A is the domain
of attraction of A (obviously, U is a subset of the domain of attraction of A).

Note that in the definition above, A is not required to be compact. Note also
that a set can be non-attractive and yet trajectories from outside the set can
converge to the set; consider for example a time-invariant linear system ẋ = Ax,
where some eigenvalues of A are in the left half plane and some are in the right
half plane, resulting in the origin being non-attractive. We can also define the
(Lyapunov) stability and asymptotic stability of the set A [53, Definition 4.10] as
below.

Definition 5.16. A nonempty closed positively invariant set A is (Lyapunov)
stable with respect to (5.1), if for every open neighborhood U1 of A, there exists
an open neighborhood U2 ⊆ U1 of A, such that every trajectory of (5.1) stays in
U1 once it starts from U2 (i.e., ξ(t) ∈ U1 for t ≥ 0 with ξ(0) ∈ U2). Furthermore,
if A is both Lyapunov stable and attractive, then it is called asymptotically stable.

Corollary 5.17 (Asymptotic stability of P). The desired path P is asymptotically
stable.

Proof. Due to Assumptions 5.5 and 5.6, there always exists a sufficiently small
positive constant α such that Ωα ∩ C = ∅. Therefore, by Theorem 5.13, the
desired path P is attractive. To prove that P is asymptotically stable, we need
to additionally show that it is (Lyapunov) stable. Define the set Γa := {p ∈ M :
‖e(p)‖ < a} for some positive constant a > 0, and it is obvious that P ⊆ Γa.
By the Lyapunov argument in (5.23) and Theorem 4.8 in [66], the equilibrium
point e = 0 of the non-autonomous system (5.22) is uniformly stable. That is, for
any ε > 0, there is δ > 0 (independent of the initial time instant t0), such that
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ξ(t0) ∈ Γδ =⇒ ξ(t) ∈ Γε for all t ≥ t0 ≥ 0. For any open neighborhood U1 of P ,
we can choose a positive constant ε sufficiently small5, such that Γε is contained
in U1 (i.e., Γε ⊆ U1). Due to the uniform stability of e = 0, there exists 0 < δ < ε,
such that ξ(t) ∈ Γε for t ≥ 0 whenever ξ(0) ∈ Γδ. By letting U2 = Γδ in Definition
5.16, P is asymptotically stable.

Lemma 5.18. Suppose every trajectory starting at any point inM converges to either
the desired path P or the singular set C as t → ∞. Then the desired path P and the
singular set C cannot be both attractive.

Proof. If C = ∅, then C is non-attractive, and the claim is vacuously true. Thus
we assume that C 6= ∅. We first show that the domain of attraction of a nonempty
closed attractive set A of a dynamical system is open6, as a generalization of
the standard result where this attractive set is replaced by an equilibrium point
[124, Proposition 5.44]. Since A is attractive, by Definition 5.15, there exists
some open neighborhood U of A such that for any x ∈ U , the trajectory starting
from x converges (topologically) to A. Therefore, for any point y in the domain
of attraction of A, there exists a time T > 0 such that Ψ(T, y) ∈ U (because
we choose V = U in Definition 5.16), where Ψ : R≥0 ×M → M denotes the
flow of the dynamical system. By the continuity of Ψ(T, ·) with respect to the
second argument, there is some open neighborhood B of y such that Ψ(T,B) ⊆ U .
Therefore, for all points b ∈ B, any trajectory starting from b will go through
Ψ(T, b) ∈ U and converge to A (by the existence and uniqueness of trajectory;
i.e., Theorem 2.1), implying that B is an open subset of the domain of attraction
of A. Therefore, the domain of attraction of the attractive set A is indeed open.

We show by contradiction by assuming that both C and P are attractive. Thus,
their domains of attraction are both open. Therefore, the whole configuration
spaceM consists of only two kinds of points, those converging to C and those to
P by the global dichotomy convergence property in Theorem 5.13. This means
that the configuration spaceM is a union of two disjoint open subsets, which is
not possible sinceM is assumed to be connected.

Corollary 5.19 (Non-attractiveness of C). Under the hypotheses of Lemma 5.18, the
singular set C is non-attractive.

Proof. By Corollary 5.17, the desired path P is attractive. Under the hypotheses of
Lemma 5.18, the desired path P and the singular set C cannot be both attractive.
Therefore, the singular set C is non-attractive.

5 The existence of ε is guaranteed by the compactness of P and Assumption 5.6. In fact, Assumption
5.6 can be dropped, but the set Γε should be changed to its component (i.e., the maximal connected
subset of Γε) that contains P , and similarly, the set Γδ used in the subsequent part of the proof should
also be changed to its component that contains P .

6 This result is similar to Proposition 4.15 in [11, Chapter V], but the latter does not provide a proof.
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Remark 5.20. Corollary 5.19 is equivalent to saying that if Theorem 5.13 holds
globally (i.e., Ωα can be replaced byM), then the singular set C is non-attractive.
Theorem 5.13 holds globally, ifM is compact, or if e(ξ) is radially unbounded
(i.e., ‖e(ξ)‖ → ∞ as ‖ξ‖ → ∞). The radial unboundedness of e(ξ) is consistent
with the physical intuition, and is probably not restrictive in practice (e.g., it
is true for Example 5.3, a typical case in the literature and in practice). Note
that Theorem 5.13 does hold globally for all examples where the desired path is
compact in this chapter (i.e., Examples 5.3, 5.11, 5.22 and all examples in Section
5.6). /

Remark 5.21. If the singular set C is non-attractive, by Definition 5.15, it is still
possible that some trajectories (commencing outside C) can converge to the
singular set C. Nevertheless, in this case, one can immediately conclude that
there must be some other trajectories that do not converge to C, no matter how
near they start to the singular set C. /

Note that by Theorem 5.13, Corollary 5.17 and Corollary 5.19, we cannot
conclude that trajectories converge to the desired path from almost all initial
conditions (i.e., almost global convergence to P). The claim about almost global
convergence to the desired path can be refuted simply by an example below
where the singular set is of measure non-zero.

Example 5.22 (C of measure non-zero). If the singular set is of measure non-zero,
one cannot expect almost global convergence to the desired path since every
trajectory starting from the singular set will remain in that set. To construct such
a case, first we introduce a smooth but non-real-analytic function (see Fig. 5.3a)
b : R2 → R:

b(x, y) =

exp(
1

1− x2 − y2 ) if x2 + y2 > 1,

0 otherwise.
(5.24)

We can construct the function φ : R2 → R using (5.24) as below:

φ(x, y) = 4 + (−x2 − y2) · b(x, y). (5.25)

The desired path P = {(x, y) ∈ R2 : φ(x, y) = 0} is a circle of radius approx-
imately 2. Moreover, the singular set C of the vector field derived from φ is a
disk of radius 1 centered at the origin (see Fig. 5.3b). In this case, almost global
convergence to the desired path is not possible, since the singular set C has a
non-zero measure. /

Note that the function φ in the example above is not real analytic. In fact, it
is proved in [50] that when all the level functions φi are real analytic, then the
singular set of the corresponding vector field is of measure zero. However, even
if the level functions φi are real analytic, we still cannot conclude that the initial
conditions such that trajectories converging to the singular set are of measure zero,
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Figure 5.3: Example 5.22. (a) The graph of the smooth non-real-analytic function b in
(5.24). (b) The non-real-analytic vector field of which the function φ is given in
(5.25). The solid line is the desired path and the dashed line is the boundary
of the singular set, which is the unit disk centered at the origin.

and thus almost global convergence to the desired path cannot be guaranteed. A
well-known example where an equilibrium, which is obviously of measure zero,
is non-attractive but almost all trajectories converge to it is presented in [124, p.
186].

The discussion above shows that it is generally challenging to study the domain
of attraction of the desired path P or the singular set C: we cannot even guarantee
the almost global convergence to the desired path by Corollary 5.17 and Corollary
5.19. However, by Theorem 5.13, if the level functions φi are known a priori, then
one can numerically check whether the singular set C is empty or not. If C 6= ∅, it
obviously follows that global convergence to the desired path P is not possible.
But this requires the knowledge of the singular set, hence the knowledge of the
specific expression of the vector field.

It is our interest to study whether we can obtain a general result about the
convergence of the desired path without knowing the specific analytic expressions
of the vector field and the singular set. This interest is further motivated by the
observation that the singular set is nonempty in many examples in the literature
where the desired path is homeomorphic to the unit circle. Example 5.3 is
consistent with this observation.
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5.5 singular points and non-path-converging
trajectories

5.5.1 Existence of singular points

The following result shows that for the whole space to be the domain of attraction
of an attractor, the shapes of the whole space and the attractor should be consistent
topologically, independent of the system’s specific form.

Lemma 5.23. Consider the autonomous system ẋ = f (x), where f is Lipschitz continu-
ous and x is defined on a smooth finite-dimensional manifoldM. Suppose L is a compact
asymptotically stable embedded submanifold of M. Then L is a strong deformation
retract of its domain of attraction.

Proof. Combine Theorem 5, Corollary 7 and Proposition 10 in [99].

Rather than merely presenting this lemma, we list below several key steps
behind this lemma, which are of theoretical interest. For convenience, the domain
of attraction of L is denoted by A(L).

S.1 As L is a compact embedded submanifold, there exists a tubular neigh-
borhoodW of L which can be continuously shrunk to L; precisely, L is a strong
deformation retract ofW .

S.2 The asymptotic stability of L implies the existence of a smooth Lyapunov
function V on A(L) of which the time derivative V̇ is negative definite on A(L)
[153, Theorem 3.1]. We can choose a constant ρ > 0 such that the sublevel set
Vρ := {x ∈ M : V(x) ≤ ρ}, which is a smooth manifold [152], is strictly contained
in the tubular neighborhood7 W . It follows from the negative definiteness of
V̇ that the vector field f in Lemma 5.23 only crosses the boundary ∂Vρ of the
sublevel set Vρ once, or precisely, the vector field is transverse to ∂Vρ.

S.3 Define the first hitting time to be the first time instant when the system
trajectory starting from x̄ ∈ A(L) reaches the sublevel set Vρ. Then since the
vector field is transverse to ∂Vρ, it is proved that the first hitting time Tρ(x̄) is
continuous with respect to x̄ ∈ A(L).

S.4 The continuity of the first hitting time implies that A(L) can be continu-
ously shrunk to Vρ; precisely, Vρ is a strong deformation retract of A(L).

7 Existence of ρ is guaranteed by the properties of the Lyapunov function V
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S.5 The two continuous deformation processes in S.1 and S.4 imply that A(L)
can be continuously shrunk to L. Or precisely, L is a strong deformation retract
of A(L).8

Remark 5.24 (Outline of an alternative proof). We can independently derive the
same result as Lemma 5.23 using the “local triviality” property [77, Chapter 10]
and the Wazewski set theorem [27, Theorem 2.3]. We briefly introduce our proof
technique for its theoretical interest as follows.

The desired path P (i.e., equivalent to L in Lemma 5.23) being a compact
regular level set implies the property called “local triviality” [77, Chapter 10],
which shows the “stability” of the topology of level sets near the desired path.
This means that other level sets in the vicinity of the desired path look like
the desired path; i.e. they are compact and homeomorphic to the desired path.
Consequently, this vicinity is homeomorphic to the elliptic solid torus D × S1,
where D ⊆ Rn−1 is an ellipsoid centered at 0 ∈ Rn−1 and is a sublevel set of the
Lyapunov function (5.19). Thus, we can indirectly study the properties of the
original vector field χ in a neighborhood of the desired path by investigating the
vector field χ′ on this topological space: the elliptic solid torus D × S1.

Then using the Lyapunov function (5.19) and its negative definite derivative, it
can be shown that the vector field χ′ is transverse to the boundary S := ∂D × S1

of the elliptic solid torus D × S1. This implies the continuity of the first hitting
time which is the first time instant a trajectory “outside” of the elliptic solid torus
reaches the boundary S . Therefore, one may imagine that the set of all converging
trajectories is continuously compressed into the boundary S , while every point
in the boundary S remains stationary during the whole continuous deformation
process. This can be rigorously proved by the Wazewski set theorem [27, Theorem
2.3], where the boundary S turns out to be an exit set, which roughly means that
every trajectory starting from this boundary will immediately exit from it.

Moreover, as the desired path is an embedded submanifold of M, it has a
tubular neighborhoodW and this neighborhood can be continuously shrunk onto
the desired path [77, Theorem 6.24, Proposition 6.25]. Combining this continuous
deformation process with the other one mentioned above, it is intuitive to see that

8 Technically, S.1 implies that there exists a homotopy (corresponding to a strong deformation retraction)
s : W × [0, 1] → W such that s(w, 0) = w, s(w, 1) ∈ L for all w ∈ W and s(l, t) = l for all l ∈ L and
t ∈ [0, 1]. Similarly, S.4 implies that there exists a homotopy (corresponding to a strong deformation
retraction) h : A(L) × [0, 1] → A(L) such that h(y, 0) = y, h(y, 1) ∈ Vρ for all y ∈ A(L) and
h(v, t) = v for all v ∈ Vρ and t ∈ [0, 1]. A new homotopy (corresponding to a strong deformation
retraction) r : A(L) × [0, 1] → A(L) can be constructed as r(y, t) = h(y, 2t) for y ∈ A(L) and
t ∈ [0, 1/2], and r(y, t) = s(h(y, 1), 2t− 1) for y ∈ A(L) and t ∈ (1/2, 1]. This homotopy r shows that
L is indeed a strong deformation retract of A(L) [99, Theorem 4].
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the desired path P is a (strong) deformation retract of its domain of attraction
denoted by A(P).9

Our proof and that of Lemma 5.23 both revolve around a) the regularity of the
desired path (i.e., a compact regular level set and thus an embedded submanifold)
and b) the continuity of the first hitting time (due to the transversality of the
vector field to some surfaces encompassing the desired path). These two aspects
turn out to be crucial in deriving the result. /

Remark 5.25. Note that Lemma 5.23 does not hold if L is not compact. In
fact, the compactness of L (or the desired path) is a crucial assumption in
deriving the subsequent results. A counterexample is illustrated in Chapter 6

(i.e., Counterexample 1). /

An implication of Lemma 5.23 is the following theorem:

Theorem 5.26 (Homotopy equivalence). The domain of attraction of the desired path
P with respect to (5.1) is homotopy equivalent to the unit circle S1.

Proof. Let L = P in Lemma 5.23 and note that P ≈ S1.

We explain the potential utility of Theorem 5.26. One benefit relies on the
computability of the related topological invariants. If global convergence to
the limit cycle P holds, then by Theorem 5.26, the configuration spaceM and
the limit cycle P are homotopy equivalent. This means that the homotopy
equivalence of the configuration space M and the limit cycle P is a necessary
condition for the global convergence. This further implies that to check if global
convergence to the limit cycle P is possible, we can examine the topological
invariants which are invariant under homotopy equivalences. These topological
invariants include the Euler characteristic [76, p. 178], homotopy groups [76, p.
208], homology/cohomology groups [76, pp. 339-355, pp. 374-378]. Some of
these invariants are already known for some important topological spaces, and
more are being investigated in the literature. For example, the Euler characteristic
of SO(3) is 2, while that of S1 is 0. This implies that on the manifoldM = SO(3),
it is impossible to guarantee global convergence to a compact desired path
P ⊆ SO(3) which is homeomorphic to the unit circle. In practice, this implies
that, for example, a quadcopter for which the orientations are defined on SO(3),
cannot follow a set of desired orientations defined by P ≈ S1, from every initial
orientation.

Even though homotopy equivalent sets can look very different (compare R2 \
{0} and S1 for example), another benefit of Theorem 5.26 is that it helps one

9 Technically, due to the continuity of the first hitting time, we can define a continuous time function
T : A(P)→ R, such that ΨT(p)(p) ∈ W for every p ∈ A(P), where Ψ : R×M→M is the flow of
the dynamical system (5.1). Then we can deform A(P) onto P by first “squeezing” A(P) intoW via
the homotopy G(p, s) = Ψ2s·T(p)(p) with s ∈ [0, 1

2 ], and thenW onto P via the homotopy G(p, t) =
H(ΨT(p)(p), 2t − 1) with t ∈ [ 1

2 , 1], where H is a homotopy corresponding to the deformation
retraction ofW onto P .
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obtain some intuition of how a domain of attraction looks. It also helps rule out
some possibly wrong intuition that one might be misled into initially, especially
when some path-converging or non-path-converging trajectories are of measure
zero, and hence it is difficult, if not impossible, to be depicted by computer
simulations. We will illustrate by examples in Section 5.6.

The following theorem is particularized toM = Rn.

Theorem 5.27 (Impossibility of global convergence in Rn). If the configuration
spaceM is the n-dimensional Euclidean space Rn, then global convergence to the desired
path P is not possible. In addition, if the dichotomy convergence property (i.e., Theorem
5.13) holds globally10, then the singular set C is nonempty.

Proof. SinceM = Rn is not homotopy equivalent to11 S1, the conclusion follows
directly from Theorem 5.26 and the dichotomy result of Theorem 5.13.

A major motivation of Theorem 5.27 is the observation that in many examples
in the literature [50], [63], [74], [157], the singular sets are nonempty, and hence
global convergence to the desired path is simply not possible12. But is it the case
that whenever P ≈ S1, then there is always a nonempty singular set? For the 2D
case, this is true by the Poincaré-Bendixson theorem, concluding that there always
exist at least one singular point of the vector field within the region enclosed by
the desired path, which is a limit cycle of the autonomous systems. Nevertheless,
the Poincaré-Bendixson theorem cannot be straightforwardly extended to higher-
dimensional spaces, for which the conclusion is not clear, but Theorem 5.27 is
able to give an affirmative answer.

It is true that if the singular set C is determined to be nonempty, then global
convergence to the desired path P is not possible by Theorem 5.13. However, the
significance of Theorem 5.27 is that it gives a more fundamental conclusion in the
sense that it does not depend on the specific expressions of the level functions
φi (hence the vector field χ), and avoids the possibly complicated computations
of the singular set C when the system dimensions are large. Most importantly,
the independence of Theorem 5.27 on the level functions φi implies that even
though we can choose different level functions φi to represent the same desired
path P , practically speaking, Theorem 5.27 simply prevents us from hoping for
better performance in terms of global convergence to the desired path by trying
different level functions φi.

Note that the root causes of this topological obstacle are: a) the system (5.1)
is autonomous; b) the asymptotically stable desired path is homeomorphic to

10 See Remark 5.20 regarding when Theorem 5.13 globally holds.
11 This can be seen from, for example, the fact that the Euler characteristic of S1 is 0 while that of Rn is

1.
12 When the singular set is non-empty, every trajectory of (5.1) starting from the singular set will simply

remain stationary in the singular set (since a singular point is an equilibrium point of (5.1)), and
thus it does not converge to the desired path. Therefore, the global convergence of trajectories to the
desired path is simply not possible.
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the unit circle while M = Rn. Another implication of Theorem 5.27 is that if
one must achieve a global convergence result, then the only possible approach is
to change the topology of the desired path P , if the autonomous system (5.1) is
given. This is possible by, for example, “cutting” and “stretching” the compact
desired path along an additional dimension, and thereby transforming it to an
unbounded one which is homeomorphic to the real line (i.e., P ≈ R). This way,
at least, the topological obstruction is removed. See Chapter 9 for related results
along these lines applicable in Euclidean spaces.

5.5.2 The existence of non-path-converging trajectories

Theorem 5.27 concludes that global convergence to the desired path in Rn is not
possible whenM = Rn. Thus, it is of significant interest to show the existence
of the non-path-converging trajectories, which do not converge to P . A theorem
identifying some of these trajectories follows; the proof involves notions such as
covering spaces, lifts, fundamental groups and homology, so we refer to Chapter
7, Chapter 11 and Chapter 13 in [76] for an introduction.

Before presenting the main theorem, we first provide some preliminary lemmas
and notations. The notation Hn−1(·) denotes the (n− 1)-dimensional homology
group [76, Chapter 13], and (·)∗ denotes the homomorphism between homology
groups induced by a continuous map (·). Let Bn−1 := {x ∈ Rn−1 : ‖x‖ < 1} be
the unit open ball in Rn−1 centered at 0, and Bn−1

− := Bn−1 \ {0}.
Lemma 5.28. There holds Hn−1(Bn−1

− ×R) = {0}.
Proof. Since Sn−2 is a deformation retract of Bn−1

− , and R is contractible (i.e.,
homotopy equivalent to a singleton), Bn−1

− ×R is homotopy equivalent to Sn−2 ×
{x0}, for a point x0 ∈ R. In addition, Sn−2 × {x0} is homotopy equivalent to
Sn−2. Therefore, we have [76, Theorem 13.23]

Hn−1(Bn−1
− ×R) = Hn−1(S

n−2) = {0}.

Lemma 5.29. Let i∂BR
: ∂BR → Rn \ P be the inclusion map, where ∂BR denotes the

boundary of a closed ball BR ⊆ Rn of radius R containing the desired path P . The
homomorphism i∂BR ,∗ : Hn−1(∂BR)→ Hn−1(R

n \ P) induced by i∂BR
is non-trivial13.

Proof. Fix x0 ∈ P , and denote by j∂BR
and jRn\P respectively the inclusions of

∂BR and Rn \ P into Rn \ {x0}. Then

j∂BR
= jRn\P ◦ i∂BR

. (5.26)

13 A homomorphism h : G → G′ between any two groups (e.g., fundamental groups, homology groups)
is called trivial if h maps every element in G to the identity element, denoted by 0, in G′. The
homomorphism h is called non-trivial if it is not trivial.
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Since x0 lies inside the ball BR of which the boundary is ∂BR, ∂BR is a deformation
retract of Rn \ {x0} and hence j∂BR

is a homotopy equivalence between ∂BR and
Rn \ {x0}. Thus j∂BR

induces an isomorphism j∂BR ,∗ between Hn−1(∂BR) and
Hn−1(R

n \ {x0}) [76, Corollary 13.9]. Since (5.26) implies [76, Proposition 13.2]

j∂BR ,∗ : Hn−1(∂BR)→ Hn−1(R
n \ {x0})

j∂BR ,∗ = jRn\P ,∗ ◦ i∂BR ,∗,

and Hn−1(∂BR) ' Hn−1(R
n \ {x0}) ' Z [76, Theorem 13.23], this implies that

i∂BR ,∗ is non-trivial.

Now we are ready to state the following main theorem.

Theorem 5.30 (Existence of non-path-converging trajectories). Suppose n ≥ 3
for the autonomous differential equation (5.1), where the desired path P ⊆ Rn is an
embedded submanifold in Rn and a (locally) asymptotically stable limit cycle. For any
closed ball BR ⊆ Rn that contains P (precisely, P ⊆ intBR), there exists at least one
trajectory of (5.1) starting from the boundary ∂BR of the ball BR that does not converge
to P .

Proof. Step 1 (construct the map ΨT): We prove by contradiction. Denote by
Ψ : R ×Rn → Rn the flow of (5.1); i.e. γ(t) = Ψt(x) is the solution of (5.1) with
the initial condition γ(0) = x. Suppose that every trajectory starting from the
boundary ∂BR of the closed ball BR (i.e., ∂BR is an (n− 1)-dimensional sphere)
converges to the limit cycle P ; then for any point x ∈ ∂BR, there exists some
Tx > 0 such that Ψt(x) ∈ O for all t > Tx, where O is a tubular neighborhood O
of P in Rn.14 By the compactness of ∂BR and the asymptotic stability of the limit
cycle P , one can show that there exists T > 0 such that ΨT(∂BR) ⊆ O \ P .

Step 2 (rewrite ΨT): We can write ΨT : ∂BR → Rn \ P as the composition of
two functions as below:

ΨT = iO\P ◦ gT ,

where gT : ∂BR → O \ P is simply the codomain restriction of ΨT , and iO\P :
O \ P → Rn \ P is the inclusion map.

Step 3 (construct a covering map): Since P is an embedded submanifold in
Rn, and O is a tubular neighborhood, there exists a diffeomorphism15 β from
O to Bn−1 × S1 such that β(P) = {0} × S1 [77, Theorem 6.24]. Since β is a
diffeomorphism between O and Bn−1 × S1, and β(P) = {0} × S1, it follows

14 Since P is an embedded submanifold in Rn, a tubular neighborhood O of P always exists [77,
Theorem 6.24].

15 More precisely, the tubular neighborhood O being diffeomorphic to Bn−1 × S1 is because the normal
bundle of a loop in Rn is orientable.
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that O \ P is diffeomorphic to Bn−1
− × S1 with a diffeomorphism β′ : O \ P →

Bn−1
− × S1, where β′(x) = β(x) for x ∈ O \ P . Therefore,

p : Bn−1
− ×R→ O \ P

(u, θ) 7→ β′−1((u, eiθ)
)

is a covering map [76, p. 278] with Bn−1
− ×R being the covering space of O \ P .

Step 4 (lift gT and form a contradiction): Since ∂BR is simply connected and
locally path-connected for n ≥ 3 [76, Theorem 7.20], the continuous map gT :
∂BR → O \ P can be lifted [76, Corollary 11.19]; that is, there exists ḡT : ∂BR →
Bn−1
− ×R such that gT = p ◦ ḡT (see Fig. 5.4). It follows from Lemma 5.28 that

ḡT,∗ : Hn−1(∂BR)→ Hn−1(Bn−1
− ×R) is trivial. Therefore, ΨT∗ = iO\P ,∗ ◦ p∗ ◦ ḡT,∗

is trivial [76, Proposition 13.2]. Let i∂BR
: ∂BR → Rn \ P be the inclusion map

of ∂BR to Rn \ P . Since i∂BR
: ∂BR → Rn \ P and ΨT : ∂BR → Rn \ P are

homotopic16, it follows that i∂BR ,∗ = ΨT∗ [76, Theorem 13.8], and hence i∂BR ,∗ is
trivial. However, the conclusion that i∂BR ,∗ is trivial contradicts Lemma 5.29.

Remark 5.31 (Why require n ≥ 3?). The reason that the theorem cannot be
proved when n = 2 (at least following the argument for n ≥ 3) is that the
continuous map gT cannot be lifted (i.e., there does not exist the continuous
map ḡT such that gT = p ◦ ḡT). Note that ∂BR ≈ Sn−1. If n = 2, then ∂BR ≈ S1,
which is not simply connected. Then [76, Corollary 11.19] cannot be used to
imply the existence of the lift ḡT of the continuous map gT as what we did
in the proof. In fact, it can be further shown that this lift ḡT does not exist
according to the lifting criterion [76, Theorem 11.18]. This is elaborated as
follows. First, the fundamental group of ∂BR is π1(∂BR, ρ1) = π1(S

1, ρ2) = Z

for any base points ρ1 ∈ ∂BR and ρ2 ∈ S1. Second, when n = 2, Bn−1
− ×R =

((−1, 0) ∪ (0, 1))×R =
(
(−1, 0)×R

)
∪
(
(0, 1)×R

)
:= A1 ∪A2, which consists

of two disjoint contractible subspaces denoted by A1 and A2. Therefore, the
fundamental group of A1 and A2 at any of their base points is 0 in both cases.
These two facts imply that the conditions of [76, Theorem 11.18] cannot be
satisfied (since the homomorphism gT,∗ between corresponding fundamental
groups is non-trivial while the homomorphism p∗ is trivial). Therefore, there
does not exist the lift ḡT of gT , and the subsequent proof cannot proceed. In fact,
one can easily observe using an example that the theorem indeed does not hold
for the case where n = 2 (e.g., see the first example in Section 5.6). /

Remark 5.32. The sphere ∂BR in the theorem can be generalized to any smooth
(n− 1)-sphere (i.e., any smooth submanifold diffeomorphic to Sn−1). This is due
to the Jordan-Brouwer Separation theorem [52, Chapter 2.5] and the Generalized
Schoenflies Theorem [12, Chapter V], [18], [87]. /

16 A homotopy between i∂BR
: ∂BR → Rn \ P and ΨT : ∂BR → Rn \ P is G : ∂BR × [0, 1] → Rn \ P

defined by G(x, s) = Ψs·T(x).
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Bn−1
− ×R

∂BR O \ P Rn \ PgT

p
ḡT

iO\P

ΨT ' i∂BR

Figure 5.4: Relationships of continuous maps in Theorem 5.30. The set ∂BR is an (n− 1)-
dimensional sphere. The map p is a covering map, ḡT is a lift of gT such that
gT = p ◦ ḡT , and ΨT = iO\P ◦ gT , where iO\P is an inclusion map. The map
ΨT is homotopic to the inclusion map i∂BR

.

The essential idea behind the proof of Theorem 5.30 is that the ball BR cannot
be continuously shrunk to a point if there are “holes” or “obstacles” in the
ball’s interior. Imagine a two-dimensional sphere containing the desired path,
which can be treated as a circle, and the whole space is R3. The sphere will
be continuously shrunk as its points move towards the desired path along the
system’s flows. Note that the deforming sphere does not intersect with the desired
path during this process since the path is a periodic orbit of the autonomous
system (i.e., the desired path can be seen as an obstacle). If all points of the sphere
are driven by the flows to converge to the path ultimately, the deforming sphere
will be pulled apart into pieces, but this is impossible due to the continuity of
flows. This essential idea might be utilized to show the following two conjectures.

Conjecture 5.33. Suppose the assumptions of Theorem 5.30 hold, but the domain of the
vector field becomes Rn \ H, where H is a nonempty set. If there exists a closed ball BR
such that H∩ intBR 6= ∅, then there exists at least one trajectory of (5.1) starting from
the boundary of the ball ∂BR such that it does not converge to the limit cycle P .

Here the set H can be regarded as a collection of holes, and the condition
H ∩ intBR 6= ∅ means that there is at least one hole inside the closed ball BR.
Furthermore, as this ball can be shrunk to be arbitrarily close to the “hole”, this
indicates that in the close vicinity of the “hole”, such a non-path-converging
trajectory exists. This somehow gives a way to locate where the non-path-
converging trajectories originate from. In practice, this indicates the following
conjecture:

Conjecture 5.34. It is impossible for vehicles (e.g. a wheeled robot, a drone) of which
the motions are governed by the autonomous system (5.1) to smoothly converge to a
desired configuration (e.g., position, orientation) from every initial configuration in an
environment scattered with obstacles.
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Figure 5.5: Streamlines of the first example. The solid line (red) is the desired path, and
the center point (red) is the only singular point.

This is because the vehicles cannot bump into obstacles, and thus these obstacles
are regarded as “holes” H in the configuration space M (e.g., M = R2 for a
wheeled robot moving on a plane orM = SE(3) for a drone flying with different
poses). This is a general conjecture independent of how the configuration space
looks; a similar conclusion was drawn in [68], [120] for the special case of a sphere
world. Conjecture 5.34 is also consistent with the recent result in [17, Theorem
11], which shows that the global asymptotic stabilization of the origin using
continuous controllers is not possible in environments with (bounded) obstacles.

5.6 numerical simulations
We present simulation examples in this section to illustrate the theoretical results
in Section 5.5.1. These examples are meant to display the initial conditions under
which trajectories do not converge to the desired path. They are consistent with
the claim that the domains of attraction of the desired path are indeed homotopy
equivalent to the unit circle.

In the first example, we choose φ = x2/4 + y2 − 1 and the gain is k = 1 in (5.3).
For the 2D case, the wedge product in (5.3) is calculated by ⊥φ = Eφ, where
E ∈ SO(2) is a 90◦ rotation matrix. It can be numerically calculated that there
is only one singular point sA1 = (0, 0). Since the eigenvalues of the Jacobian
matrix of the vector field at this singular point have all positive real parts, the
singular point is a source of (5.1). Therefore, one could conclude that the domain
of attraction of the ellipse is A1 := R2 \ sA1, and it is indeed homotopy equivalent
to the unit circle (see the streamlines in Fig. 5.5).

In the second example, we choose a Cassini oval, which is characterized by
φ = x4 + y4 − 2a2(x2 − y2) + a4 − b4, where a = 2, b = 2.1. The gain of the vector
field (5.3) is k = 0.1. One could calculate that there are three singular points:
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Figure 5.6: (a) Streamlines of the second example. The solid line (red) is the desired path
and the three point (two blue and one red) are singular points. The magenta
streamlines converge to the central singular point. (b) The 3D tilted circle (blue
dashed line) generated by the intersection of a rotated (i.e., non axis-parallel)
right circular cylinder and a rotated plane. The point (red) at the center is the
only singular point. The dashed line (green) is the cylinder’s line of symmetry
and is normal to the plane. The four solid lines (two red and two purple) are
trajectories of (5.1) with different initial conditions.

sB1 = (0, 0), sB2 = (a, 0), sB3 = (−a, 0). Following the first example, one might
think that the domain of attraction of this example is A2 := R2 \ {sB1, sB2, sB3},
similar to the case of a circle or an ellipse. A direct computer numerical calculation
may also lead one to this conclusion17. But this is incorrect by Theorem 5.26,
as A2 is not homotopy equivalent to S1. In fact, by examining the eigenvalues
of the Jacobian matrices at these three singular points, we find out that sB1 is a
saddle point while sB2 and sB3 are unstable sources. By the Hartman-Grobman
theorem [124, Theorem 7.3], one could conclude that there must be a “line” of
points (the stable manifold of sB1) starting from which the trajectories of (5.1)
converge to the saddle point sB1, and by Theorem 5.26, this “line” probably
connects the other two singular points. In fact, after experimenting with different
plotting parameters18, we find out that there indeed exists such a “line” LB (see
the magenta arrows in Fig. 5.6a). Then the domain of attraction of the Cassini
oval is A2 := R2 \ LB ≈ S1.

In the third example, a 3D tilted circle is the desired path, which is the
intersection of a rotated (i.e., non axis-parallel) right circular cylinder and a

17 For example, by invoking StreamPlot in Mathematica directly.
18 We use StreamPlot in Mathematica and combine figures with different sampling parameters.
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rotated plane described by φ1 = x2 + 0.5(y + z)2 − 1 = 0 and φ2 = y− z = 0
respectively (see Fig. 5.6b). The gains are chosen as k1 = k2 = 1 for the vector
field (5.3). There is only one singular point at the origin sC1 = (0, 0, 0), and there
is only one eigenvalue of the Jacobian matrix with a positive real part. The line
of symmetry of the cylinder, denoted by LC := {(0, u,−u) ∈ R3 : u ∈ R}, is
normal to the plane. The vector field evaluated at any point p ∈ LC on this line
is χ(p) = (0,−2y, 2y), where y is the second coordinate of the point. This vector
χ(p) aligns with LC and points towards the singular point sC1. This is consistent
with Theorem 5.30, since for every ball that contains that desired path, every
trajectory starting from the intersection point of the ball and the line of symmetry
LC will move along LC and converge to the singular point rather than the desired
path. In addition, the domain of attraction of the tilted circle is A3 := R3 \ LC,
which is also homotopy equivalent to S1. This example is the same as that in
[74]. Note that, [74] cannot claim global convergence, since the initial condition is
restricted in a compact set. As shown here, only almost global convergence to the
3D circle can be achieved.

In the fourth example, we consider a configuration space which is not the
Euclidean space. Specifically, we consider the example of a planar robot arm with
two revolute joints, and we want to control the angles θ1, θ2 ∈ S1 of these two
revolute joints such that the end-effector of the robot arm follows some desired
trajectory (see Fig. 5.7a). Therefore, the configuration spaceM = T2 = S1 × S1 is
a torus. We aim to let the joint angles follow the desired path P ⊆M in the joint
space as below:

P = {(θ1, θ2) ∈ S1 × S1 : φ(θ1, θ2) = 0}, (5.27)

where φ(θ1, θ2) = θ1 + θ2 − π/2. The desired path in the joint space described by
these two angles corresponds to a circle trajectory of the center of the end-effector
in the Cartesian space. In other words, if the joint angles θ1 and θ2 are controlled
to follow P , then it turns out that the center of the end-effector will follow a
circle centered at (0, L2) with radius L1, where L1 and L2 are the link lengths
of the robot arm. The configuration spaceM and the desired path P ⊆M are
illustrated in Fig. 5.7b. SinceM = T2 is not homotopy equivalent to S1, global
convergence fromM to the desired path P ⊆M is not possible from Theorem
5.26. However, one way to achieve global convergence19 is to lift the problem to
the covering space [76, pp. 278-287] R2 of T2, and the simple-closed desired path
P is thereby transformed to a straight line in R2, which is a deformation retract
of R2. Then the vector-field guided path-following problem can be solved in the
space R2. More specifically, we regard the angles in (5.27) as (θ1, θ2) ∈ R2, and
the function φ : R2 → R, and derive the guiding vector field using (5.3). Here,
the vector field is no longer defined on T2 but on R2. By some computations, one
can observe that there are no singular points of the vector field (5.3) in R2, and

19 More precisely, this global convergence is considered from the covering space R2 rather thanM = T2.



96 topological analysis of vf-pf on manifolds

x
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θ1

L1

θ2
L2

(a) (b)

Figure 5.7: (a) A planar robot arm with two revolute joints of which the angles are denoted
by θ1 and θ2. The dashed line is the desired path to follow in the Cartesian
space R2, which corresponds to φ(θ1, θ2) = θ1 + θ2 − π/2 = 0 in the joint
spaceM = S1 × S1. (b) Simulations of trajectories on the torusM = S1 × S1.
The torusM = S1× S1 is transparent such that trajectories are visible. The red
dashed line is the desired path P ⊆M. The blue, green and cyan solid lines
are trajectories corresponding to initial conditions (θ1, θ2) = (0, 0), (0.3 π, 0)
and (1.5 π, 0.5 π) respectively.

therefore, the global convergence from any point (θ1, θ2) ∈ R2 in the covering
space to the desired path P is expected. As seen from Fig. 5.7b, three integral
curves of the vector field (5.3) all converge to the desired path P . For more
detail about the idea of “lifting” the original configuration space to achieve global
convergence to the desired path in the Euclidean space, see Chapter 9.

In the fifth example, the manifoldM is the special orthogonal group SO(3),
which consists of a set of orthogonal matrices whose determinants are 1. Since
SO(3) is an embedded submanifold of R3×3, we have SO(3) = {A ∈ R3×3 :
A>A = I, det A = 1}. Therefore, we can choose six functions in (5.10) as
follows: f1 = A>1 A2, f2 = A>1 A3, f3 = A>2 A3, f4 = A>1 A1 − 1, f5 = A>2 A2 − 1,
f6 = A>3 A3 − 1, and ai = 0 for i = 1, . . . , 6, in (5.10), where Aj is the j-th column
of the matrix20 A, for j = 1, 2, 3. Note that the gradient of the function fi,
i = 1, . . . , 6, is a column vector consisting of the partial derivatives of fi with

20 These constraints do not rule out the possibility that det A = −1, but once the initial configuration is in
SO(3), then the whole trajectory is always in SO(3); i.e., the determinant of any matrix of the trajectory
is always 1. This is due to the fact that {A ∈ O(3) : det A = −1} and {A ∈ O(3) : det A = 1} = SO(3)
are disjoint.
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Figure 5.8: The motions of the coordinate frames, where cubes are used for better visual-
ization. The coordinate frames at time instants 0.0, 1.4, 4.1, 6.9 and 9.6 seconds
are shown from left to right.

respect to each of the nine entries of the matrix A ∈ R3×3. We choose the desired
path:

P = {A ∈ SO(3) : φ1(A) = a13 = 0, φ2(A) = a23 = 0}
= {Rotz(θ) : θ ∈ S1}︸ ︷︷ ︸

P1

∪ {Rotx(π)Rotz(θ) : θ ∈ S1}︸ ︷︷ ︸
P2

, (5.28)

where aij is the ij-th entry of the matrix A, and Rot{x,y,z}(θ) ∈ SO(3) is the
rotation matrix encoding the rotation of θ rads about the x, y, or z-axis. Since P
constitutes two disjoint components P1 and P2 in (5.28), which component a tra-
jectory converges to relies on the initial condition. We choose the initial condition
to be ξ0 = Rotx(π/4)Roty(−π/4) ∈ SO(3), and the corresponding trajectory
converges to P1. Intuitively, the trajectory in SO(3) represents continuous pose
transitions starting from Rotx(π/4)Roty(−π/4) to rotations about the z-axis of
the “identity pose” I = Rotx(0)Roty(0)Rotz(0) (see Fig. 5.8).

Remark 5.35. It might be elusive to design a desired path P on SO(3), which is
the zero regular level set of the “stacked” function Φ := (φ1, φ2) : SO(3) → R2.
One convenient approach is to introduce two continuous surjective functions
µ : SO(3) → S2 ⊆ R3 defined by R 7→ Rv with v = (0, 0, 1) ∈ S2 ⊆ R3, and
πxy : S2 ⊆ R3 → R2 being the projection of the first two coordinates onto the xy-
plane. One can check that µ is a submersion on SO(3) and πxy is a submersion on
S2 \ {(x, y, z) ∈ S2 ⊆ R3 : z = 0}. Let Φ = πxy ◦ µ; then every point of the open
disk {(x, y) ∈ R2 : x2 + y2 < 1} is a regular point of Φ. Therefore, the desired
path P above is the (regular) zero-level set Φ−1((0, 0)

)
= (πxy ◦ µ)−1((0, 0)

)
=

µ−1((0, 0, 1)
)
∪ µ−1((0, 0,−1)

)
= P1 ∪ P2 in (5.28). It is of interest to investigate

more complicated desired paths in SO(3) (i.e., pose motions) by specifying
different functions Φ. /
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5.7 conclusions
We investigate some topological aspects of a guiding vector field defined on a
general smooth Riemannian manifold for the path-following control problem,
and analyze the stability and attractiveness of the desired path and the singular
set. Specifically, we first generalize the widely-studied guiding vector field on the
Euclidean space to that defined on a general smooth manifold such that the new
guiding vector field enables asymptotic following of a desired path defined on a
manifold, such as a torus for robot arm joint space control applications. Then,
motivated by many examples in the literature, we propose a question regarding
whether singular points always exist in a guiding vector field when the desired
path is homeomorphic to the unit circle. This question is directly related to
the possibility of global convergence to the desired path. Since we consider a
general smooth n-dimensional Riemannian manifoldM, the Poincaré-Bendixson
theorem is not always applicable.

To answer this question, we first derive the dichotomy convergence property
of the new guiding vector field, and conduct stability and attractiveness analysis
of the desired path and the singular set. Then we revisit an existing topological
result and provide some interpretations and implications for the vector-field
guided path-following problem. It turns out that the domain of attraction of
the desired path (homeomorphic to the unit circle) is homotopy equivalent to
the unit circle. For the particular case whenM = Rn, we conclude that global
convergence to the desired path is impossible, and singular points always exist
when the dichotomy convergence property holds globally. Motivated by this
impossibility result of global convergence to the desired path, we have shown
the existence of non-path-converging trajectories. More specifically, we have
proved that for any ball containing the desired path, there always exists at least
one non-path-converging trajectory starting from the boundary of the ball. This
result is related to the topological aspect of motion planning problems in obstacle-
populated environments. Several numerical examples are provided to illustrate
the theoretical results.
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In the vector-field guided path-following problem, a sufficiently smooth
vector field is designed such that its integral curves converge to and propagate
along a one-dimensional geometric desired path. The existence of singular
points where the vector field vanishes creates a topological obstruction to
global convergence to the desired path, and some topological analysis has
been conducted in Chapter 5. In this chapter, we strengthen Theorem 5.26

in Chapter 5 by showing that the domain of attraction (DOA) of the desired
path, which is a compact asymptotically stable one-dimensional embedded
submanifold in an n-dimensional ambient manifoldM, is homeomorphic to
Rn−1 × S1, not just homotopic equivalent to S1 as shown in Theorem 5.26.

This chapter is based on

• W. Yao, B. Lin, B. D. O. Anderson, and M. Cao, “The domain of attraction of the desired path
in vector-field guided path following,” 2021, Submitted.
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6.1 introduction
Despite the advantages of vector-field guided path-following algorithms, a major
issue is the existence of singular points where the vector field vanishes. This
issue is the motivation for the topological analysis of these algorithms, and some
questions regarding the attractiveness of singular points and the desired path,
the dichotomy convergence results, and the possibility of global convergence
to the desired path, have been answered in Chapter 5, under the assumption
that the desired path is homeomorphic to the unit circle S1. In particular, it
has been shown in Theorem 5.26 that the domain of attraction (DOA) of the
desired path, which is a compact asymptotically stable embedded submanifold,
is homotopic equivalent to S1. This result characterizes the DOA in terms of
homotopic equivalence, but homotopic equivalent objects may be distinctive in
the geometric or set-theoretical sense (e.g., S1 and R2 \ {0}).

Generically, the aforementioned desired path is a compact asymptotically stable
embedded submanifold, denoted by A for convenience, in an ambient finite-
dimensional manifold. Some studies also characterize the DOA of the submanifold
A. In [11, Chapter V, Lemma 3.2], it has been shown that the intersection of
an ε-neighborhood of A and some sublevel set of a Lyapunov function is a
deformation retract of the DOA of A. This result has been strengthened in [10],
[99], which prove that A itself is actually a deformation retract of its DOA, and
thus A and its DOA are homotopic equivalent. In [152, Theorem 3.4], it is claimed
that A is diffeomorphic to a tubular neighborhood of itself. This result will be
discussed later in Remark 6.16.

In this chapter, we strengthen the result in Theorem 5.26. We show that the
DOA of the desired path P is not just homotopic equivalent to S1 (as shown
in Theorem 5.26), but is actually homeomorphic to Rn−1 × S1, where n is the
dimension of the ambient manifold M. Discussion on a related result in [152,
Theorem 3.4] is provided in Remark 6.16.

The remainder of this chapter is organized as follows. Section 6.2 formally
introduces the problem to be treated in this chapter, along with a review of the
guiding vector field on a smooth n-dimensional Riemannian manifold for path
following. Then Section 6.3 provides the answer to the problem, which further
characterizes the topological property of the DOA of the desired path. Finally,
Section 6.4 concludes the chapter.

6.2 problem formulation
In this section, we review guiding vector fields defined on an n-dimensional
Riemannian manifoldM with the Riemannian metric denoted by g in Chapter 5,
after which we formulate the problem.



6.2 problem formulation 101

6.2.1 Vector-field guided path following on Riemannian manifolds

The desired path P ⊆M is described as the intersection of zero-level sets of twice
continuously differentiable functions φi :M→ R, i = 1, . . . , n− 1. Namely,

P := {ξ ∈ M : φi(ξ) = 0, i = 1, . . . , n− 1},

where the functions φi are termed level functions for convenience. This description
of the desired path P enables one to define the path-following error e :M→ Rn−1

by stacking all φi functions together; that is,

e(ξ) = (φ1(ξ), · · · , φn−1(ξ))
>, (6.1)

The reason for calling it path-following error is that, using this notion, the desired
path P is equivalent to

P = {ξ ∈ M : e(ξ) = 0}. (6.2)

Using the level functions φi, the guiding vector field χ :M→ TM defined on
the manifoldM is

χ(ξ) = ⊥φ(ξ)−
n−1

∑
i=1

kiφi(ξ) grad φi(ξ), (6.3)

where ki are positive constants, grad φi(·) ∈ T(·)M are the gradient vectors of
the level functions φi on the manifoldM, and ⊥φ(·) ∈ T(·)M is a generalization
to the manifold M of the wedge product of all the gradient vectors grad φi(·)
(see Chapter 5 for more detail). The term ⊥φ(ξ) is orthogonal to each of the
gradient grad φi(ξ), the same as its counterpart defined on the Euclidean space,
as stated in Lemma 5.1 in Chapter 5. The first and second terms on the right of
(6.3) induce motion along the path, and motion towards the path, respectively. A
point ξ ∈ M where the vector field vanishes (i.e., χ(ξ) = 0) is called a singular
point, and the set of singular points is called the singular set, which is defined by

C = {ξ ∈ M : χ(ξ) = 0}.

6.2.2 Assumptions and problem statement

For certain manifoldsM and under the global dichotomy convergence condition,
the existence of a singular point (or possibly a set of singular points) is unavoid-
able (e.g., Theorem 5.27 in Chapter 5). The following standing assumption is
required. In effect, it is an assumption on the functions φi.



102 the doa of the desired path in vector-field guided path following

Assumption 6.1 (Chapter 5). There are no singular points on the desired path.
More precisely, C is empty or otherwise there holds dist(C,P) > 0.

Assumption 6.1 ensures the “regularity” of the desired path P stated in Lemma
6.2.

Lemma 6.2 (Chapter 5, Regularity of P). The zero vector 0 ∈ Rn−1 is a regular value
of the map e in (6.1), and hence the desired path P is a C2 embedded submanifold inM.

Given the guiding vector field χ : M → TM in (6.3), one investigates the
solutions to the following autonomous ordinary differential equation:

ξ̇(t) = χ(ξ(t)). (6.4)

The manifoldM is called the configuration space. To use the path-following error
e(ξ(t)) along a trajectory ξ(t) of (6.4) to determine the convergence to the desired
path, we need the following standing assumption.

Assumption 6.3 (Chapter 5). For any given constant κ > 0, there holds
inf{||e(ξ)|| : dist(ξ,P) ≥ κ} > 0,

To obtain the topological results later, we impose the following standing
assumption as in Chapter 5:

Assumption 6.4. The desired path P is homeomorphic to the unit circle S1 (i.e.,
P ≈ S1).

It is shown in Theorem 5.26 of Chapter 5 that the DOA of the desired path
P has the same homotopy type as the unit circle S1. Despite its theoretical
interest and its usefulness as shown in Chapter 5, Theorem 5.26 of Chapter 5

gives a very rough impression of how the DOA may look, since two homotopy
equivalent objects may be geometrically or set-theoretically very different; for
example, R2 \ {0} and S1 are homotopy equivalent. Another example is {0} and
Rn, for any positive number n. SupposeM = R2, then it is unclear, for instance,
if the DOA of the desired path P is R2 \ {0} (or R2 excluding any other point).
Therefore, having a stronger notion to capture the “shape” of the DOA is highly
desirable, and the problem to be solved in this chapter is to obtain such a stronger
notion to replace the homotopy equivalence between the desired path and its
DOA.

Observe that neither R2 \ {0} and S1, nor {0} and Rn, are homeomorphic.
Thus a candidate notion to consider is the homeomorphic relation between two
topological objects. In the subsequent sections, we will strengthen Theorem 5.26

of Chapter 5 by showing that the DOA is homeomorphic to Rn−1 × S1, where n is
the dimension of the manifoldM (i.e., Theorem 6.15).
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6.3 further characterization of the doa

6.3.1 A property near a compact regular level set

There is a property holding near a compact component1 of a regular level set (i.e., the
level set of a regular value of a smooth map). In particular, when the component
of some regular level set of a smooth map is compact, then locally all level sets
are compact and homeomorphic to the compact component. In addition, these
level sets are placed “nicely” as precisely stated in the following proposition.

Proposition 6.5. Let fi : M → R, i = 1, . . . , n− 1, be smooth surjective functions.
Suppose the smooth map F = ( f1, . . . , fn−1) : M → Rn−1 has a regular value p ∈
Rn−1. If there exists a compact component S0 of F−1(p), then there exist some open
neighborhood Q of S0 inM and an open neighborhood U of p in Rn−1, along with a
diffeomorphism Γ : Q → U × S0 such that

πU ◦ Γ = F
∣∣
Q ,

where πU denotes the projection of the product space U × S0 onto the first factor U , and
F
∣∣
Q is the restriction of F to Q.

Proof. One can check that the conditions of the Ehresmann theorem [30, p. 378]
are satisfied, and thus the conclusion follows from the theorem. For a detailed
argument, also see [85, Proposition 2.1].

To explain Proposition 6.5, for simplicity, we assume that there is only one
component of F−1(p) and it is compact (i.e., S0 = F−1(p)). Then Proposition
6.5 claims that near the compact regular level set S0 (i.e., in the neighborhood
Q), all level sets are homeomorphic to S0. Moreover, these level sets are placed
“nicely” in a way that is explicitly expressed by the homeomorphism Γ: they are
homeomorphic to U × S0 (see Fig. 6.1). Roughly speaking, the level sets F−1(U )
in the open neighborhood Q are topologically equivalent to putting copies of S0
in parallel and crossing them through by U , as illustrated by a thick line in Fig.
6.1 (i.e., U × S0). We can think of this property as showing the “stability” of the
topology of level sets near the compact regular level set S0.

Remark 6.6. In this proposition, one can let the map F be only twice continu-
ously differentiable (i.e., F ∈ C2), and hence the map Γ can be changed to a
C2-diffeomorphism. /

Let πi : Rn → R be the projection function that gives the i-th argument of a
function; namely, πi is defined by πi(x1, . . . , xi, . . . , xn) = xi. Then one naturally
has the following corollary related to the path following problem.

1 When we talk about the components of some level set, we can regard the level set itself as a topological
space with the topology inherited from the ambient space, and then the concept of component is the
same as that in the preliminaries (i.e., Section 2.3 in Chapter 2).



104 the doa of the desired path in vector-field guided path following

Figure 6.1: The illustration of Proposition 6.5. The red vertical line in M represents
S0, which is a compact component of the regular level set F−1(p), where
p ∈ U ⊆ Rn−1. The shaded region is an open neighborhood denoted by Q of
S0 inM, and U is an open neighborhood of p ∈ Rn−1. All level sets in Q are
topologically equivalent to S0, and they are “placed nicely” in the sense that
they are homeomorphic to U × S0. This picture takes inspiration from [77, Fig.
10.1].

Corollary 6.7. There is an open neighborhood Q of the desired path P = e−1(0) inM
and a C2-diffeomorphism Γ from Q to U × S1, where U = e(Q) ⊆ Rn−1, such that

e
∣∣
Q = πU ◦ Γ. (6.5)

Therefore, ei = φi = πi ◦ Γ in Q, for i = 1, . . . , n− 1.

Proof. From Lemma 6.2, the C2 map e = (φ1(·), . . . , φn−1(·))> has a regular value
0 ∈ Rn−1, and the inverse image is the desired path (i.e., P := e−1(0)), which
is assumed to be homeomorphic to the unit circle (i.e., P ≈ S1), hence compact
[76, Theorem 5.27]. From Proposition 6.5 and Remark 6.6, the conclusions then
follow.

The illustration of Corollary 6.7 is shown in Fig. 6.2. This implies that there
exists a neighborhood U ⊆ Rn−1 of 0 such that the preimage e−1(U ) “looks like”
a solid torus U × S1 in the homeomorphic sense.

6.3.2 DOA of the desired path

We consider the autonomous system (6.4). Let t 7→ Ψ(t, x0) be the solution to
(6.4) with the initial condition Ψ(0, x0) = x0, then Ψ : R≥0 ×M →M is a flow
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P ≈ S1 U ⊆ Rn−1

U × S1

e|Q

Γ πU

Q ⊆ M

Figure 6.2: The illustration of Corollary 6.7.

[25]. We will also use Ψt(x0) interchangeably with Ψ(t, x0), as is standard in the
literature. Without loss of generality, we can assume that the solution to (6.4) is
forward complete (i.e., the solution is well-defined for t→ ∞), since otherwise
one can replace the vector field χ by χ/(1 + ‖χ‖) without causing any difference
to the topological properties of the flow that will be discussed in the sequel [25,
Proposition 1.14].

Next, we define two sets W◦ and W− of some subset W ⊆ M below. To
understand these sets intuitively, an example is presented after the definition.

Definition 6.8 ([27, Definition 2.2]). Given W ⊆ M, two sets W◦ and W− are
defined below:

W◦ :={γ ∈ W : ∃t > 0, Ψ(t, γ) /∈ W}
W− :={γ ∈ W : ∀t > 0, Ψ([0, t), γ) 6⊆ W},

where 6⊆ means “not a subset of”. The setW− ⊆ W◦ is called the exit set ofW .

Example 6.9. Suppose, with abuse of notation, we have a compact asymptotically
stable invariant set P ⊆ M (or a point when P is a singleton), and its DOA

is denoted by A(P). We also assume that there is an open and precompact
neighborhood U ⊇ P of P such that i) The closure of U , denoted by U , is a
(proper) subset of the DOA A(P); ii) every trajectory starting from the boundary
∂U of U immediately leaves the boundary and enters the neighborhood U (and
thus converges to P subsequently). Therefore, every trajectory starting from
U converges to P . Define W = M\ U , which is a closed set in M. Then the
aforementioned boundary ∂U ⊆ W is the exit set W−, since every trajectory
starting from it immediately leaves the setW , and thus it acts like an exit ofW .
Since U is a proper subset of the DOA A(P), we define W◦ = W ∩ A(P) 6= ∅.
The set W◦ is such that every trajectory starting from W◦ may stay in W for
some time (in contrast to W− for which trajectories leave W immediately) but
leavesW and enters U eventually (see Fig. 6.3).

Through this example, the setsW◦ andW− may be seen as a generalization of
some neighborhoods of P , whileW itself is a generalization or, better expressed,
variation on the set of points in the exterior of the DOA of P , but also actually
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W− = ∂U

U ( A(P)
P

W◦ =W ∩ A(P) W =M\U

M

Figure 6.3: Illustration ofW ,W◦ andW− inM. The red region (covered by green) is a
compact asymptotically stable invariant set P , with the DOA denoted by A(P).
The green region represents an open and precompact neighborhood U of P
and U is a proper subset of A(P). The yellow and cyan (covered by yellow)
regions representW andW◦ respectively. The black arrows are some vectors
of a vector field onM. All vectors on the boundary ∂U are transverse to ∂U
and point to the interior of U . The exit set isW− = ∂U , which acts like an exit
of the setW .

including part of that DOA. It is well known that, in general, there is no system-
atic way to find the DOA A(P). Thus, in this chapter, we first find those sets
W ,W◦,W−, and then characterize the DOA by taking advantage of the physical
intuition associated with these sets.

/

For simplicity, we denote by eQ the restriction of e to Q (i.e., eQ := e
∣∣
Q), where

Q is defined in Corollary 6.7. In addition, we define an ellipsoid:

D := {x ∈ Rn−1 : x>Kx < r} ⊆ Rn−1 (6.6)

centered at 0 ∈ U = e(Q) ⊆ Rn−1, where K := diag{k1, . . . , kn−1} is the diagonal
matrix with all the positive gains ki, i = 1, . . . , n− 1, and r is chosen sufficiently
small such that D ⊆ U , where D denotes the closure of D. Since e−1

Q (D) ≈
D × S1 by Corollary 6.7, e−1

Q (D) is an embedded submanifold with the manifold
boundary [77, p. 120]

S := e−1
Q (∂D) ⊆M, (6.7)
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which is homeomorphic to ∂D × S1. We define the setW below:

W :=M\ e−1
Q (D) ⊆M. (6.8)

With the introduction of the exit set in Definition 6.8, the next lemma identifies
exactly what the exit set of W is, and also shows the forward-invariance of
e−1
Q (D) ⊆M and e−1

Q (D) ⊆M.

Lemma 6.10. It holds that

1. The set S in (6.7) is the exit setW− ofW ;

2. The sets e−1
Q (D) and e−1

Q (D) are forward-invariant sets with respect to (6.4), and
Ψ(0,+∞)(S) ⊆ e−1

Q (D), where Ψ(0,+∞)(S) := {Ψt(p) : t ∈ (0,+∞), p ∈ S}.
Proof. Proof of Claim 1): First note that

〈 grad φi, χ〉g
(6.3)
=

〈
grad φi, ⊥φ(ξ)−

n−1

∑
j=1

k jφj(ξ) grad φj(ξ)

〉
g

=

〈
grad φi,−

n−1

∑
j=1

k jφj(ξ) grad φj(ξ)

〉
g

,

(6.9)

for i = 1, . . . , n− 1, where 〈·, ·〉g denotes the Riemannian metric, and we have
used the orthogonality property (Lemma 5.1 in Chapter 5) in the last equation.
Now we can calculate the time derivative of the path-following error e:

d
dt

e(ξ(t)) =
d
dt


φ1(ξ(t))

...

φn−1(ξ(t))

 =


〈 grad φ1, χ〉g

...

〈 grad φn−1, χ〉g


(6.9)
=


〈 grad φ1,−∑n−1

j=1 k jφj grad φj〉g
...

〈 grad φn−1,−∑n−1
j=1 k jφj grad φj〉g

 .

(6.10)

We adopt the common convention in differential manifold theory that a vector
field with a subscript represents the vector at the point represented by the
subscript. Let χ′ denote the vector field defined on U × S1 such that

χ′
Γ(p) = Γ∗(χp)

for any point p ∈ Q, where Γ∗ is the tangent map of Γ. Since Γ is a C2-
diffeomorphism, one can obtain information about χ by studying χ′. Define a
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function Π : U × S1 → U by Π(·) := (π1(·), . . . , πn−1(·))>, where each compo-
nent function πi(·) is a projection function. One can calculate that

(Π>KΠ) ◦ Γ(·) =
(

n−1

∑
i=1

kiπ
2
i (·)

)
◦ Γ(·)

=
n−1

∑
i=1

ki(π
2
i ◦ Γ)(·) =

n−1

∑
i=1

kie2
i (·) = e(·)>Ke(·). (6.11)

In addition, by definition of a tangent vector [77, pp. 50-55], we have

χ(e>Ke) =
d
dt

(e(ξ(t))>Ke(ξ(t)))
∣∣∣
t=0

(6.10)
=


〈 grad φ1,−∑n−1

j=1 k jφj grad φj〉g
...

〈 grad φn−1,−∑n−1
j=1 k jφj grad φj〉g


> 

k1φ1
...

kn−1φn−1


=−

〈
n−1

∑
j=1

k jφj grad φj,
n−1

∑
j=1

k jφj grad φj

〉
g

≤ 0,

(6.12)

where ξ : (−ε, ε) → Q is a trajectory of (6.4) with ξ(0) ∈ Γ−1(∂D × S1) and
ξ̇(0) = χ

ξ(0). Therefore, we have

χ′(Π>KΠ) = χ
(
(Π>KΠ) ◦ Γ

) (6.11)
= χ(e>Ke)

(6.12)
= −‖l(·)‖2 ≤ 0, (6.13)

where l(·) := ∑n−1
j=1 k jφj(·) grad φj(·). Note that for any point ξ ∈ M, if ‖l(ξ)‖ =

0, then either grad φj(ξ), j = 1, . . . , n − 1, are linearly dependent, or they are
linearly independent, but all φj(ξ) equal zero. In the former case, the first term of
(6.3) satisfies ⊥φ(ξ) = 0, and thus χ(ξ) = 0, leading to ξ ∈ C. In the latter case, it
is obvious that ξ ∈ P . Therefore, we have

χ′
ξ(Π

>KΠ) < 0, ∀ξ ∈ ∂D × S1 (6.14)

as there are all regular points on Γ−1(∂D × S1) ⊆ Q \ P , and

χ′
ξ(Π

>KΠ) ≤ 0, ∀ξ ∈ D × S1 (6.15)

where the equality is taken only for points ξ ∈ Γ(P) ≈ {0} × S1.
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Given an initial condition ζ(0) ∈ S ⊆ Q, let ζ : R≥0 →M be the solution to
(6.4). Since Q is an open subset inM, there is some ε > 0 such that ζ(t) ∈ Q for
t ∈ (−ε, ε). Let

ζ̃ := Γ ◦ ζ|(−ε,ε)

and therefore
d
dt

ζ̃ = χ′ ◦ ζ̃ (6.16)

on U × S1 with ζ̃(0) ∈ ∂D × S1. According to (6.14), one has

d
dt

(Π>KΠ) ◦ ζ̃(t)
∣∣
t=0 = χ′(Π>KΠ) < 0,

and hence by (6.15), we have (Π>KΠ) ◦ ζ̃(t) < r for any t ∈ (0, ε), where recall
that r is defined in (6.6). Thus, ζ̃

(
(0, ε)

)
⊆ D × S1. Therefore, ζ

(
[0, ε)

)
⊆ e−1
Q (D)

and this shows that S is the exit set ofW .
Proof of Claim 2): Suppose ζ(0) ∈ e−1

Q (D). By (6.15) and using the same
reasoning as above, we have (Π>KΠ) ◦ ζ̃(t) ≤ r for any t ∈ [0, ε), and thus
ζ̃[0, ε) ⊆ D × S1. By the compactness of D × S1, one can show that there is an
extension of the solution ζ̃ of (6.16) on (−ε,+∞) such that ζ̃(0, ∞) ⊆ D × S1

[66, Theorem 3.3]. Then due to the uniqueness of the solution to the Cauchy
problem of (6.4), ζ = Γ−1 ◦ ζ̃ is defined on (−ε,+∞) and thus ζ(0, ∞) ⊆ Γ−1(D×
S1) = e−1

Q (D). This shows that e−1
Q (D) is an invariant set of the flow Ψ, and

Ψ(0,+∞)(S) ⊆ e−1
Q (D). The same argument can be applied to the case where

ζ(0) ∈ e−1
Q (D) to yield that e−1

Q (D) is also an invariant set.

Observe that the vector field χ in (6.3) is transverse to S inM as stated below.

Lemma 6.11. It holds that span{χp} ⊕ TpS = TpM for p ∈ S , where ⊕ is the direct
sum; that is, the vector field χ is transverse to S inM.

Proof. Since S is homeomorphic to ∂D × S1, S is an (n− 1)-dimensional sub-
manifold in M. For any p ∈ S , we have e∗p(TpS) = Te(p)∂D, where e∗p is the
tangent map of e at p. Then (6.14) implies that χp /∈ TpS for p ∈ S , and hence
span{χp} ⊕ TpS = TpM for p ∈ S ; that is, the vector field χ is transverse to S
inM.

The following lemma states that the flow Ψ(·, ·) of (6.4) is open and injective.

Lemma 6.12. The flow Ψ : R × S → M of (6.4) is an open injection. In particular,
Ψ : (−∞,+∞)× S → Ψ(−∞,+∞)(S) is a homeomorphism.

Proof. We first show that Ψ(·, ·) is an open map from R × S to M. Since
span{χp} ⊕ TpS = TpM for any point p ∈ S by Lemma 6.11, the tangent
map Ψ∗(0,p) of the flow Ψ(·, ·) is a surjection from T(0,p)(R × S) onto TΨ(0,p)M
for each point (0, p) ∈ R × S . Therefore, Ψ(·, ·) is locally an open map from
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some open neighborhood O of (0, p). Thus, Ψ(O) := {Ψt(q) : (t, q) ∈ O} is open
in M. For any fixed t0 ∈ R, denote by t0 +O the set {(t + t0, q) : (t, q) ∈ O},
which is an open neighborhood of (t0, p). Therefore,

Ψ(t0 +O) = {Ψt0+t(q) = Ψt0(Ψt(q)) : (t, q) ∈ O}
= Ψt0

(
{Ψt(q) : (t, q) ∈ O}

)
= Ψt0 (Ψ(O))

is open since Ψt0(·) is a C2-diffeomorphism ofM. Thus, Ψ(·, ·) is an open map
from R × S toM.

To prove that Ψ(·, ·) is an injection from R × S toM, suppose Ψt(p) = Ψt′(q)
for some p, q ∈ S and t, t′ ∈ R. If t = t′, then p = q due to the uniqueness
of the solution to the Cauchy problem in (6.4). Now assume that t < t′, then
p = Ψt′−t(q). According to Lemma 6.10, p ∈ e−1

Q (D), which contradicts the
condition that p ∈ S . A similar contradiction arises if t > t′. Therefore, we have
t = t′ and p = q, justifying that Ψ(·, ·) is an injection from R × S toM.

We have proved above that the flow Ψ : R × S → M of (6.4) is an open
injection. Now if we restrict the codomain of Ψ to its image Ψ(−∞,+∞)(S), then
the map Ψ : (−∞,+∞)× S → Ψ(−∞,+∞)(S) is continuous, bijective, and open,
hence a homeomorphism [77, Theorem A.38 (c)].

According to Definition 6.8, the setW◦ is particularized to

W◦ = {x ∈ W : ∃t > 0, Ψt(x) ∈ e−1
Q (D)}. (6.17)

Based on Lemma 6.10 and Lemma 6.12, we could now give the exact expression
of the setW◦.

Proposition 6.13. Let Ψ(·, ·) be the flow of (6.4). Then the set W◦ as defined in
Definition 6.8 and particularized to (6.17) is

W◦ = Ψ(−∞,0](S).

In addition,W◦ is homeomorphic to (−∞, 0]× S given by the homeomorphism Ψ(·)(·),
andW◦ is open inW .

Proof. We first show that W◦ = Ψ(−∞,0](S). According to Definition 6.8 and
(6.17), for any x ∈ W◦, there exists some τ > 0 such that Ψτ(x) ∈ e−1

Q (D). Let

a := inf{t ∈ (0, τ) : Ψ[t,τ](x) ⊆ e−1
Q (D)} ≥ 0,

and then Ψa(x) ∈ e−1
Q (∂D), and therefore, x ∈ Ψ−a(e−1

Q (∂D)) = Ψ−a(S) ⊆
Ψ(−∞,0](S). Thus,W◦ ⊆ Ψ(−∞,0](S). Conversely, suppose x ∈ Ψ(−∞,0](S). Then
there exists some t ≤ 0 and y ∈ S such that Ψt(y) = x, or y = Ψ−t(x). Since
S is the exit set of W by Lemma 6.10, there exists a positive constant δ such
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that Ψ(0,δ)(y) ⊆ e−1
Q (D). Therefore, we have Ψ−t+δ(x) ∈ e−1

Q (D). In view of
the definition of W◦ in (6.17), it follows that x ∈ W◦, hence Ψ(−∞,0](S) ⊆ W◦.
Combining this with the previous claim thatW◦ ⊆ Ψ(−∞,0](S), we haveW◦ =
Ψ(−∞,0](S).

By Lemma 6.12, Ψ : (−∞,+∞) × S → Ψ(−∞,+∞)(S) is a homeomorphism.
Hence Ψ(·)(·) is a homeomorphism from (−∞, 0]× S toW◦.

Finally, we prove thatW◦ is open inW by showing thatW◦ = Ψ(−∞,+∞)(S)∩
W . Since e−1

Q (D) is an invariant set of the flow by Lemma 6.10, Ψ(0,+∞)(q) ⊆
e−1
Q (D) for every q ∈ S , and therefore, Ψ(0,+∞)(S) ∩W = ∅. So Ψ(−∞,+∞)(S) ∩
W = Ψ(−∞,0](S) ∩W = W◦ ∩W = W◦. Since Ψ(−∞,+∞)(S) is open in M by
Lemma 6.12,W◦ is open inW .

Now we can characterize the “shape” of the set e−1
Q (D) ∪W◦, which is related

to the DOA of the desired path P as shown later.

Proposition 6.14. The set e−1
Q (D) ∪W◦ is homeomorphic to Rn−1 × S1.

Proof. By Proposition 6.13, (t, q) 7→ Ψt(q) is a homeomorphism from (−∞, 0]×S
to W◦. In addition, S is homeomorphic to ∂D × S1 with the homeomorphism
Γ−1

∣∣
∂D×S1 by Corollary 6.7. Therefore,

Υ : (−∞, 0]× ∂D × S1 →W◦

(t, b, s) 7→ Ψt ◦ Γ−1(b, s)

is a homeomorphism, where Γ−1 : D × S1 → e−1
Q (D) is also a homeomorphism.

For simplicity, define

X := (−∞, 0]× ∂D × S1 tD × S1

with the disjoint union topology [76, p. 64], where t is the disjoint union. We
define a new topological space X/ ∼, where ∼ is the equivalent relation that
identifies (0, b, s) from {0} × ∂D × S1 with (b, s) from ∂D × S1. Therefore, the
natural projection

pr : X → X/ ∼
is a quotient map [101, Chapter 2, Section 22]. Note that e−1

Q (D) and W◦ are
subspaces of e−1

Q (D) ∪W◦. Therefore, the map

Υ t Γ−1 : X → W◦ ∪ e−1
Q (D)

(−∞, 0]× ∂D × S1 3 (t, b, s) 7→ Υ(t, b, s)

D × S1 3 (b, s) 7→ Γ−1(b, s)



112 the doa of the desired path in vector-field guided path following

X

X/ ∼ W◦ ∪ e−1
Q (D)

pr

Λ

Υ t Γ−1

Figure 6.4: Since pr is a quotient map and Υ t Γ−1 is continuous, Λ is continuous.

is continuous. By construction, there exists the unique map

Λ : X/ ∼→ W◦ ∪ e−1
Q (D)

such that Λ ◦ pr = Υ t Γ−1 (see Fig. 6.4). Due to the property of a quotient map
[101, Theorem 22.2], the map Λ is continuous (see Fig. 6.4). One can check that Λ
is a bijection. In addition, Λ is an open map. This is justified as follows. First, both
(−∞, 0]× ∂D × S1 and D × S1 are topological manifolds with boundaries {0} ×
∂D × S1 and ∂D × S1 respectively. Note that the boundaries are homeomorphic
to each other in a natural way which is given by the equivalent relation ∼; i.e.,
(0, b, s) 7→ (b, s) is a natural homeomorphism. Then it follows from applying the
technique of attaching manifolds together along their boundaries [76, Theorem
3.79] that X/ ∼ is an n-manifold. Second, W◦ ∪ e−1

Q (D) = Ψ(−∞,+∞)(S) ∪
e−1
Q (D), which is an open subset inM, and hence it is also an n-manifold. Thus,

Λ is a continuous injection between two (boundaryless) n-manifolds, and hence
it is open [100, Theorem 36.5]. Therefore, Λ is a homeomorphism, and it remains
to show that X/ ∼ is homeomorphic to Rn−1 × S1.

Note that Rn−1 = D ∪ (Rn−1 \ D). Define

f : (−∞, 0]× ∂D → Rn−1 \ D
(t, q) 7→ q− tq.

It is obvious that f is a homeomorphism. Applying the same argument above,
one can show that2

f × idS1 t idD × idS1 : X → Rn−1 × S1,

where id is the identity function, induces a homeomorphism Λ′ between X/ ∼
and Rn−1 × S1 (see Fig. 6.5).

In the context of the vector-field guided path-following problem, we could
interpret Proposition 6.14 more intuitively and leads to the following theorem.

2 We explain the notation “×” connecting two functions. Given any functions f : X → X′ and
g : Y → Y′, the map f × g : X×Y → X′ ×Y′ is defined by ( f × g)(x, y) = ( f (x), g(y)) for x ∈ X and
y ∈ Y.
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X

X/ ∼ Rn−1 × S1

pr

Λ′

f × idS1 t idD × idS1

Figure 6.5: Since pr is a quotient map and f × idS1 t idD × idS1 is continuous, Λ′ is
continuous.

Theorem 6.15. If the desired path P is homeomorphic to the unit circle S1, then the set
of initial conditions such that trajectories of (6.4) eventually converge to the desired path
P is homeomorphic to Rn−1 × S1.

Proof. One easily observes that the set e−1
Q (D) ∪W◦ consists of initial conditions

such that trajectories of (6.4) eventually converge to the desired path P . Then the
result follows immediately from Proposition 6.14.

Remark 6.16. In Theorem 3.4 of [152], it is claimed that the DOA of a compact or
non-compact uniformly asymptotically stable3 submanifoldA of a finite-dimensional
manifoldM is diffeomorphic to an open tubular neighborhood of A. Therefore,
Theorem 6.15 is consistent with this claim. However, the proof of [152, Theorem
3.4] in [152] is very brief, only indicating the method of the proof without giving
much detail, while we provide detailed and thorough proofs of Theorem 6.15,
along with several lemmas and propositions to offer more geometric intuition.
Moreover, the strong claim of [152, Theorem 3.4] without imposing the compact-
ness requirement on A might not be accurate, as shown in Counterexample 1

below. As future work, we will develop a complete and detailed proof of [152,
Theorem 3.4] with an additional assumption that A is compact, and indicate why
the theorem would fail if A was not compact [83]. /

Counterexample 1. Consider the manifold

M = R2 \ {(−1, 0), (1, 0)}

with the subspace topology inherited from R2. Define

A := (−1, 1)× {0} ⊆ M

3 Let ξ(t) denote a trajectory of an autonomous system. In [152], a closed set A is said to be uniformly
asymptotically stable if there exists r > 0 such that for every ε > 0, there exists a time instant T(ε) such
that dist(ξ(0),A) < r =⇒ dist(ξ(t),A) < ε for t > T(ε). Uniform asymptotic stability is stronger
than asymptotic stability, but if A is compact, then these two notions are equivalent. Since we focus on
the compact case in this chapter, we do not bother to explicitly compare these two notions.
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as a subspace ofM. One can verify that A is closed inM and is a submanifold
ofM. Note that A is not compact4, because the open cover Uε := {(−1 + ε, 1−
ε)× (−ε, ε) : ∀ε > 0} of A does not have a finite subcover. Define a potential
function f :M→ R≥0 as below:

f (p) = (dist(p,A))2

=


y2, if − 1 < x < 1

(x− 1)2 + y2, if x > 1 or x = 1, y 6= 0

(x + 1)2 + y2, if x < −1 or x = −1, y 6= 0,

where p = (x, y) is a point in M. One can verify that f (·) is continuously
differentiable. Indeed, the partial derivatives of f with respect to x and y are:

∂ f
∂x

=


0, if − 1 < x < −1 or x = ±1, y 6= 0

2(x− 1), if x > 1

2(x + 1), if x < −1

(6.18)

and ∂ f
∂y = 2y, respectively. Therefore, we can define the gradient system

ṗ = −∇ f (p), (6.19)

and it can be easily verified thatA is globally uniformly asymptotically stable with
respect to (6.19) by using the radially unbounded Lyapunov function V(p) =
f 2(p). Namely, the DOA of A is the manifold M, which is not contractible.
However, according to [152, Theorem 3.4], the DOA of A is homeomorphic to its
tubular neighborhood, but its tubular neighborhood is homeomorphic to A×R,
which is contractible. Therefore, this counterexample shows that the claim of
[152, Theorem 3.4] without requiring the compactness of A is not accurate.
Furthermore, in this case, the DOA of A is not even homotopy equivalent to itself
since the fundamental group of the DOA; i.e.,M, is non-zero, but that of A is 0
as it is contractible. 4

6.4 conclusions
It has been shown in Chapter 5 that the DOA of a desired path P , which is a
compact asymptotically stable one-dimensional embedded submanifold under
an autonomous system, is homotopic equivalent to the unit circle S1. However,
homotopic equivalent objects may be geometrically and set-theoretically distinc-
tive, so this characterization of the DOA sometimes may not be satisfactory. In this

4 A topological space X is compact if every open cover of X has a finite subcover.
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chapter, we strengthen this result and show that the DOA is homeomorphic to
Rn−1× S1, where n is the dimension of the ambient manifoldM. We also provide
an example showing that if the considered submanifold was not compact (see
Remark 6.16), then its DOA is not even homotopy equivalent to the submanifold,
not to mention Theorem 6.15.





7 R E F I N E D D I C H OTO M Y
C O N V E R G E N C E I N
V E C TO R - F I E L D G U I D E D
PAT H - F O L LO W I N G O N R n

Under some broad conditions, a dichotomy convergence property in the
vector-field guided path-following problem has been proved in previous chap-
ters: the integral curves of a guiding vector field converge to either the desired
path or the singular set, where the vector field becomes zero. In this chapter,
we show that under the condition of real analyticity of the level functions (i.e.,
functions whose zero-level sets define the desired path), the convergence to
the singular set (assuming it is compact) implies the convergence to a single
point of the set, dependent on the initial condition. Thus, limit cycles are
precluded. Numerical simulations support the theoretical results.

This chapter is based on

• W. Yao, B. Lin, B. D. O. Anderson, and M. Cao, “Refining dichotomy convergence in vector-field
guided path following control,” in European Control Conference (ECC), 2021.
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7.1 introduction
An issue arising with the dichotomy convergence property associated with vector-
field guided path-following algorithms is that generally, convergence (e.g., with
respect to a metric) to a closed invariant set does not automatically imply the
convergence to a single point of the set. It is known that this implication is true
under some conditions for gradient flows [3], [4], while it is not yet completely
clear for non-gradient flows. In particular, the guiding vector fields for path-
following designed in Chapters 4, 5, 9 and 10, are not gradients of any potential
functions, but as shown in [63], Chapter 4 (Proposition 4.8, Proposition 4.14)
and Chapter 5 (Theorem 5.13), under some conditions, the integral curves of the
vector fields (i.e., the trajectories of the autonomous differential equation where
the right-hand side is the guiding vector field) have the dichotomy convergence
property: they either converge to the desired path or the singular set, where
the vector field becomes zero. As the desired path is a limit cycle (when the
desired path is homeomorphic to the unit circle), it is obvious that trajectories
do not converge to a single point in the desired path; however, it is to this point
unresolved whether trajectories converging to the singular set will converge to
a single point in the singular set (where, in general, the point depends on the
initial condition).

In this chapter, we discuss the issue pertinent to the relationship between
convergence of trajectories of a non-gradient system to a set and convergence
to a single point of the set. Under the condition of real analyticity of the level
functions, we obtain a refined version of the dichotomy convergence property:
the convergence to the singular set entails the convergence to a single point of
the set. This result not only is relevant to the specialized path-following problem,
but also extends the results in [3], [4] (using proof techniques suggested by those
works and appealing to the Łojasiewicz inequality [84]) to some non-gradient
flows.

The rest of the chapter is organized as follows. Section 7.2 revisits (or par-
ticularizes) guiding vector fields defined on Rn, for n ≥ 2, and formulates the
problem. Then the main results are presented in Section 7.3. Simulation results
are reported in Section 7.4. Finally, Section 7.5 concludes the chapter.



7.2 background and problem formulation 119

7.2 background and problem formulation

7.2.1 Guiding vector fields on Rn

As discussed before, in the vector-field guided path-following problem, the
desired path P is the intersection of the zero-level sets of sufficiently smooth
functions, called level functions:

P = {ξ ∈ Rn : φi(ξ) = 0, i = 1, . . . , n− 1}, (7.1)

where φi : Rn → R are twice continuously differentiable functions. The desired
path in (7.1) is naturally assumed to be non-empty and one-dimensional. More
assumptions are imposed in Section 7.2.2.

Recall that the guiding vector field χ : R2 → R2 for path following in the 2D
case R2 is [63]:

χ(ξ) = E∇φ(ξ)− kφ(ξ)∇φ(ξ), (7.2)

where ∇φ is the gradient vector of the function φ, E =
[ 0 −1

1 0

]
is a 90◦ rotation

matrix, and k > 0 is a constant. In higher dimensions, the vector field χ : Rn →
Rn for n ≥ 3 is (see Chapter 9 for more detail):

χ(ξ) = ⊥φ(ξ)−
n−1

∑
i=1

kiφi(ξ)∇φi(ξ)

= ⊥φ(ξ)− N(ξ)Ke(ξ),

(7.3)

where ⊥φ is the wedge product of all the gradient vectors1 ∇φi and ki > 0 are

constants for i = 1, . . . , n − 1, N(ξ) =
[
∇φ1(ξ) . . . ∇φn−1(ξ)

]
∈ Rn×(n−1),

K = diag{k1, . . . , kn−1} and

e(ξ) =
(
φ1(ξ), . . . , φn−1(ξ)

)
∈ Rn−1. (7.4)

This vector field has been treated in Chapter 4 (for n = 3), Chapter 5 (for
Riemannian manifolds) and will be elaborated in Chapter 9 (for n ≥ 3). Note
that the vector fields in (7.2) and (7.3) are not gradients of any potential function.
The integral curves of the vector fields; i.e., the trajectories of the autonomous
system described by the differential equation ξ̇(t) = χ(ξ(t)) for ξ ∈ Rn, converge
to the desired path under some conditions, and the desired path P turns out to
be a limit cycle of the aforementioned autonomous system if the desired path is

1 The sign of the wedge product depends on the order of the gradient vectors. However, this does not
affect the convergence result.
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homeomorphic to the unit circle. However, trajectories may also converge to the
singular set C defined below:

C = {ξ ∈ Rn : χ(ξ) = 0}, (7.5)

and its elements are called singular points. As with Chapter 4, we define the
following set L:

L = {ξ ∈ Rn : N(ξ)Ke(ξ) = 0}. (7.6)

7.2.2 Assumptions

As with previous chapters, we impose the following standing assumptions.

Assumption 7.1. There are no singular points on the desired path. More precisely,
C is empty or otherwise there holds dist(C,P) > 0.

Assumption 7.2. For any given constant κ > 0, there holds inf{||e(ξ)|| : ξ ∈
Rn, dist(ξ,P) ≥ κ} > 0, where e(·) is defined in (7.4).

Assumption 7.3. For any given constant κ > 0, we have inf{‖N(ξ)Ke(ξ)‖ :
dist(ξ,L) ≥ κ} > 0.

It has been known in the literature [63] and in Chapters 4 and 5 that the desired
path is an asymptotically stable limit cycle when it is homeomorphic to the
unit circle, and trajectories “spiral” and converge to the desired path but do not
converge to any single point on the desired path. Nevertheless, the answer to the
following question is not yet clear. When the trajectories converge to the singular
set rather than the desired path, will they converge to a singular point, or can
they also “spiral” towards the singular set not converging to any single point?
We only consider guiding vector fields on Euclidean spaces Rn for n ≥ 2 in this chapter.

7.3 refined dichotomy convergence

In this section, we show that if a trajectory of ξ̇(t) = χ(ξ(t)) converges to the
singular set C, then under some conditions, it converges to a point in C. This
result depends on a property of real analytic functions, which is stated in the
following lemma.

Lemma 7.4 (Łojasiewicz gradient inequality [84]). Let V : Rn → R be a real analytic
function on a neighborhood of ξ∗ ∈ Rn. Then there are constants c > 0 and µ ∈ [0, 1)
such that

‖∇V(ξ)‖ ≥ c|V(ξ)−V(ξ∗)|µ (7.7)

in some neighborhood U of ξ∗.
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Inspired by [3], [4], we have the following result.

Theorem 7.5 (Refined dichotomy convergence for R2). Let χ : R2 → R2 be the
vector field defined in (7.2), and suppose φ in (7.1) is real analytic and the set C in (7.5)
is bounded (hence compact). If a trajectory of ξ̇(t) = χ(ξ(t)) converges metrically to the
set C, then the trajectory converges to a point in C.

Proof. Given that a trajectory ξ(t) converges to the set C, which is bounded, the
trajectory ξ(t) has a limit point ξ∗ ∈ C. It remains to show that limt→∞ ξ(t) = ξ∗.

Define V : R2 → R by V(ξ) := φ2(ξ), where the function φ is defined in (7.1),
then V is also real analytic. Taking the time derivative of V along the trajectory
ξ(t) and noting that ∇V = 2φ∇φ, we have (arguments of functions are omitted
for simplicity)

d
dt

V = ∇V> ξ̇ = ∇V>(E∇φ− kφ∇φ)

= (2φ∇φ)>E∇φ− 1
2

k∇V>∇V

= −1
2

k‖∇V‖2 ≤ 0.

(7.8)

Therefore, V(ξ(t)) is non-increasing along the trajectory. Since the trajectory
converges to C, we can choose a positive constant ε satisfying ε < dist(P , C),
and then there exists T > 0, such that dist(ξ(t), C) < ε for all t ≥ T. Let
S := {p ∈ R2 : dist(p, C) ≤ ε}. Note that S is compact (since C is compact) and
dist(P ,S) > 0 (since ε < dist(P , C)). Let m := minp∈S |φ(p)| > 0. Therefore, for
all t ≥ T, we have

‖ξ̇‖ = ‖E∇φ− kφ∇φ‖

≤ ‖E∇φ‖+ k
2
‖∇V‖

=

(
1

2|φ| +
k
2

)
‖∇V‖

≤
(

1
2m

+
k
2

)
︸ ︷︷ ︸

k′

‖∇V‖.

This implies that, for all t ≥ T,

‖∇V‖ ≥ 1
k′
‖ξ̇‖. (7.9)
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Substituting (7.9) into (7.8) and using Lemma 7.4, we have

d
dt

V = −1
2

k‖∇V‖2

≤ − k
2k′
‖∇V‖‖ξ̇‖

≤ − ck
2k′
|V(ξ(t))−V(ξ∗)|µ‖ξ̇‖

(7.10)

in an open neighborhood U ⊆ S of ξ∗ for some µ ∈ [0, 1) and t ≥ T. Since
V(ξ(t)) > V(ξ∗) > 0, it follows from (7.10) that

2k′

ck
(V(ξ(t))−V(ξ∗))−µ d

dt
V ≤ −‖ξ̇‖ =⇒

c′
d
dt

(V(ξ(t))−V(ξ∗))1−µ ≤ −‖ξ̇‖, (7.11)

where c′ = 2k′/((1− µ)ck) > 0. If t1 and t2 with T ≤ t1 < t2 are such that
ξ(t) ∈ U for all t ∈ (t1, t2), then by integration of (7.11), we have

L12 :=
∫ t2

t1

‖ξ̇(t)‖dt

≤ −c′
∫ t2

t1

d
dt

(V(ξ(t))−V(ξ∗))1−µdt

= c′
[
(V(ξ(t1))−V(ξ∗))1−µ − (V(ξ(t2))−V(ξ∗))1−µ

]
≤ c′(V(ξ(t1))−V(ξ∗))1−µ. (7.12)

Choose r > 0 such that Br(ξ∗) ⊆ U , where Br(ξ∗) := {ξ ∈ R2 : ‖ξ − ξ∗‖ < r}.
Since ξ∗ is a limit point and V(·) is continuous, we can choose t1 ≥ T sufficiently
large such that ‖ξ(t1)− ξ∗‖ < r/2 and c′(V(ξ(t1))−V(ξ∗))1−µ < r/2 in (7.12).
Note that ξ(t1) ∈ Br(ξ∗). The trajectory ξ(t) remains in Br(ξ∗) after t1.2 This
shows that the trajectory ξ(t) eventually enters and remains in Br(ξ∗). Since r
can be chosen arbitrarily small, convergence of the trajectory ξ(t) to ξ∗ is thus
proved.

The same conclusion applies for the n-dimensional vector field in (7.3), but we
additionally need the following lemma.

Lemma 7.6. It holds that det(N>N) = ‖⊥φ‖2, where N and ⊥φ are defined in (7.3).

Proof. If ∇φ1, . . . ,∇φn−1 are linearly dependent, then we have det(N>N) =
‖⊥φ‖2 = 0. Now suppose ∇φ1, . . . ,∇φn−1 are linearly independent. In this case,

2 Suppose not, then there exists the smallest time instant t2 > t1 such that ‖ξ(t2)− ξ∗‖ = r and ξ(t) ∈ U
for any t ∈ (t1, t2). Therefore, we have ‖ξ(t2)− ξ∗‖ ≤ ‖ξ(t2)− ξ(t1)‖+ ‖ξ(t1)− ξ∗‖ < L12 + r/2 < r,
a contradiction, where L12 is shown in (7.12).
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it follows that ‖⊥φ‖ 6= 0. So we can define the normalized vector v = ⊥φ/‖⊥φ‖.
Since ⊥φ is orthogonal to all the gradients ∇φi, i = 1, . . . , n− 1 (see Lemma 5.1
in Chapter 5 for more detail), we have

det(N>N) = det

([
v>

N>

] [
v N

])
= det

([
v>

N>

])2

.

According to the definition of ⊥φ, we have ‖⊥φ‖ = det

([
v>

N>

])
. Then it follows

that det(N>N) = ‖⊥φ‖2.

Theorem 7.7 (Refined dichotomy convergence for Rn). Let χ : Rn → Rn be the
vector field defined in (7.3), and suppose φ in (7.1) is real analytic and the set C in (7.5)
is bounded (hence compact). If a trajectory of ξ̇(t) = χ(ξ(t)) converges metrically to the
set C, then the trajectory converges to a point in C.

Proof. The proof is similar to that in Theorem 7.5 except for the following differ-
ences. Define V : Rn → R by V(ξ) := 1/2 e>Ke, where e = (φ1, . . . , φn−1)

>; then
V is also real analytic. Note that

∇V(ξ) =
n−1

∑
i=1

kiφi(ξ)∇φi(ξ) = N(ξ)Ke(ξ).

Taking the time derivative of V along the trajectory ξ(t), we have

d
dt

V(ξ) = ∇V(ξ)> ξ̇

= ∇V(ξ)>(⊥φ(ξ)− N(ξ)Ke(ξ))

= (N(ξ)Ke(ξ))>⊥φ(ξ)− ‖∇V(ξ)‖2

= −‖∇V(ξ)‖2 ≤ 0,

(7.13)

where we use the fact that (N(ξ)Ke(ξ))>⊥φ(ξ) = 0 due to orthogonality. There-
fore, V(ξ(t)) is non-increasing along the trajectory. Since the trajectory con-
verges to C, we can choose a positive constant ε satisfying ε < dist(P , C),
and then there exists T > 0, such that dist(ξ(t), C) < ε for all t ≥ T. Let
S := {p ∈ Rn : dist(p, C) ≤ ε}. Note that S is compact and dist(P ,S) > 0. For
t ≥ T, the trajectory ξ(t) will stay in S \ C. Let the eigenvalues of the matrix
N(ξ)>N(ξ) evaluated at ξ ∈ S \ C be denoted by 0 ≤ λ1(ξ) ≤ · · · ≤ λn−1(ξ).
Since the gradient vectors ∇φi(ξ), i = 1, . . . , n− 1, are linearly independent for
ξ ∈ S \ C, the eigenvalues are all positive λi(ξ) > 0 for ξ ∈ S \ C, and by Lemma
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7.6, we have det(N(ξ)>N(ξ)) = ‖⊥φ(ξ)‖2 = λ1(ξ) · · · λn−1(ξ) > 0 for ξ ∈ S \ C.
We also have

λn−1(ξ) = max
‖v‖=1

v>N(ξ)>N(ξ)v ≤(
‖∇φ1(ξ)‖+ · · ·+ ‖∇φn−1(ξ)‖

)2 ≤ (n− 1)2β2, (7.14)

where β := maxi=1,...,n−1 maxp∈S ‖∇φi(p)‖ > 0. In addition,

‖N(ξ)Ke(ξ)‖2 = (Ke(ξ))>(N(ξ)>N(ξ))(Ke(ξ)) ≥
λ1(ξ)‖Ke(ξ)‖2 ≥ λ1(ξ)k2

min‖e(ξ)‖2 ≥ λ1(ξ)k2
minα, (7.15)

where kmin := min{k1, . . . , kn−1} and α := minp∈S ‖e(p)‖2 > 0 (due to
dist(P ,S) > 0 and Assumption 7.2). Therefore,

λ1(ξ) ≤
1

αk2
min
‖N(ξ)Ke(ξ)‖2. (7.16)

Furthermore, we have

‖⊥φ(ξ)‖2 ≤ λ1(ξ)λ
n−2
n−1(ξ) ≤

((n− 1)β)2(n−2)

αk2
min

‖N(ξ)Ke(ξ)‖2,

which implies
‖⊥φ(ξ)‖ ≤ a‖N(ξ)Ke(ξ)‖, (7.17)

where a = ((n− 1)β)n−2/(kmin
√

α) > 0. Now, we have

‖ξ̇‖ = ‖⊥φ(ξ)− N(ξ)Ke(ξ)‖
≤ ‖⊥φ(ξ)‖+ ‖N(ξ)Ke(ξ)‖

(7.17)
≤ (a + 1)‖N(ξ)Ke(ξ)‖ = (a + 1)‖∇V(ξ)‖.

The remaining parts of the proof are the same as those of Theorem 7.5.

Remark 7.8. It is shown in [3], [4] that single limit point convergence of a bounded
solution of a gradient flow cannot be proved in general for smooth but non-real-
analytic cost functions, whereas the real analyticity of the cost function can
guarantee the single limit point convergence. Note that these results cannot be
directly applied here since the vector fields in (7.2) and (7.3) are not gradients
of any cost functions. Nevertheless, we reach the same conclusions under the
conditions regarding the real-analyticity of φi. Therefore, Theorem 7.5 and
Theorem 7.7 can be regarded as extensions of the results in [3], [4]. /
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Figure 7.1: First simulation results. The real analytic φ function is φ(x, y) = x3/3− 9. The
dashed-dot blue and dashed red lines are the singular set C and the desired
path P respectively. The blue arrows represent the vector field. The solid
magenta curve is the trajectory starting from (−3, 0). Due to the analyticity of
φ, the trajectory converges to a point in C.

7.4 simulations
In this section, we show two simulation examples where the functions φ are real
analytic and non-real-analytic respectively to verify Theorem 7.5.

In the first example, we choose a real analytic φ function: φ(x, y) = x3/3− 9,
hence ∇φ = (x2, 0)>. Therefore, C is the y-axis, which is unbounded, and P is
the vertical line x = 3, which is a one-dimensional embedded manifold. The
vector field is χ(x, y) = x2 (−kφ(x, y), 1)>, and the simulation results are shown
in Fig. 7.1, where the control gain is k = 0.1.

In the second example, we choose a non-real-analytic φ function, and illustrate
the case where a trajectory converges to the singular set C but not to a single
point in C. First, consider the following smooth bump function:

b(x) =

{
exp (1/x) if x < 0

0 if x ≥ 0
, (7.18)

which is smooth but non-real-analytic. Therefore, we can construct a non-real-
analytic function φ(x, y) = b(x)

(
x3/3− 9

)
. The gradient and the vector field

are:

∇φ =


(

x2 e1/x − e1/x (x3/3−9)
x2 , 0

)>
if x < 0

(0, 0)> if x ≥ 0
,
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Figure 7.2: Second simulation results. The non-real-analytic φ function is φ(x, y) =
b(x)

(
x3/3− 9

)
, where b(x) is in (7.18). The singular set C is the shaded area:

the right-half plane including the y-axis. The blue arrows represent the vector
field. The solid magenta curve is the trajectory starting from (−3, 1). In
contrast to Fig. 7.1, although the trajectory converges to C, it does not converge
to any single point in C.

χ =


(
−k e1/x (x3/3− 9

)
σ1, σ1

)>
if x < 0

(0, 0)> if x ≥ 0
,

where σ1 = x2 e1/x − e1/x (x3/3− 9
)
/x2. The singular set is the right-half plane

x ≥ 0. In this example, a trajectory converges to C but not to a single point in C,
as seen in Fig. 7.2, where the control gain is k = 1.

7.5 conclusions
We give a refined dichotomy convergence result for the path-following problem
on Rn for n ≥ 2. In particular, we show that real analyticity of the level function
leads to the refined conclusion that converging of a trajectory to a singular set
implies converging to a point in this set. This is in contrast to the convergence to
the desired path, where a trajectory spirals towards the set without converging to
any single point of the set. Although the guiding vector field is not a gradient of
any potential function, this result is consistent with [3], [4] where only gradient
flows are considered.



Part II

A P P L I C AT I O N S W I T H F O R M A L G U A R A N T E E S





8 G U I D I N G V E C TO R F I E L D S F O R
F O L LO W I N G O C C L U D E D PAT H S

Accurately following a geometric desired path in a two-dimensional space
is a fundamental task for many engineering systems, in particular mobile
robots. When the desired path is occluded by obstacles, it is necessary and
crucial to temporarily deviate from the path for obstacle/collision avoidance.
In this chapter, we develop a composite guiding vector field via the use of
smooth bump functions, and provide theoretical guarantees that the integral
curves of the vector field can follow an arbitrary sufficiently smooth desired
path and avoid collision with static and moving obstacles of arbitrary shapes.
These two behaviors are reactive since path (re)-planning and symbolic map
construction are not involved. To deal with the common deadlock problem,
we introduce a switching vector field, and the Zeno behavior is excluded. We
also elaborate on the extensions of our approach to higher-dimensional spaces
and nonholonomic robot models. Simulations are conducted to support the
theoretical results.

This chapter is based on

• W. Yao, B. Lin, B. D. O. Anderson, and M. Cao, “Guiding vector fields for following occluded
paths,” IEEE Transactions on Automatic Control (TAC), 2021, Under review.

• W. Yao, B. Lin, and M. Cao, “Integrated path following and collision avoidance using a
composite vector field,” in 2019 IEEE 58th Conference on Decision and Control (CDC), IEEE, 2019,
pp. 250–255.
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8.1 introduction
When the desired path is occluded by obstacles, a robot needs to deviate from the
desired path to avoid colliding with the obstacles, and then return to the desired
path to continue the path-following task. We clarify the meanings of “occlusion
by obstacles” and “deviation”. Usually, path-following algorithms are designed
based on a predefined desired path taking no account of obstacles. Then notice is
taken of (initially) unforeseen obstacles, with a view to designing a modification
to the original algorithms; the modified algorithm then takes trajectories around
the obstacle and return to the original desired path having passed the obstacle.
This is normally achieved one obstacle at a time, and some extension to moving
obstacles is possible [73], [128], [139], [151], [173]. Without considering the path-
following requirement, there exist many obstacle/collision-avoidance algorithms
in the field of motion planning, such as the Artificial Potential Field (APF)
method [67], the navigation function method [68], [112], [120], the Dynamic
Window (DW) method [41] and the Vector Field Histogram (VFH) method [14].
These approaches usually require a global map including obstacles to allow
planning of a feasible path, and extensions of some of these approaches also allow
only local information of obstacles [132, Chapter 6]. However, these collision-
avoidance/path-planning algorithms alone are not automatically compatible with
path-following algorithms. This is because a starting point and a destination
point are required in collision-avoidance algorithms to plan a feasible path or
determine possible moving directions between these two points, while they are
not required in path-following algorithms for which a desired path is explicitly
specified. In particular, vector-field guided path-following algorithms usually
enable trajectories from almost all starting points in the workspace to converge
to and propagate along the desired path, rather than from only one predefined
starting point and converging to a single destination point [63], [74], [165].

Only a few existing studies integrate path-following algorithms and collision-
avoidance algorithms. An approach is proposed in [139] to deform slightly the
desired path such that the obstacle-avoidance behavior is realized at the cost of
compromising the path-following accuracy. However, only experimental studies
using wheeled robots in an environment scattered with unforeseen static and
moving obstacles are provided, whereas the theoretical analysis is limited. In
[128], the idea of locally deforming the desired path is adopted, and a force field
is also utilized to realize path-following and collision-avoidance functionalities
simultaneously. This approach is computationally efficient, as experimentally
verified with a ground vehicle moving in an unknown environment populated
with dynamic obstacles. Nevertheless, since only straight lines are considered
as desired paths between adjacent waypoints, this approach can be restrictive in
some applications, such as satellites circulating along orbits. In [92], a switching
guidance system with a path-following mode and a collision-avoidance mode for
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an unmanned surface vessel is designed. The system is effective if the desired
paths and obstacles have some typical geometric shapes, such as straight lines
and circles, and positions and velocities of obstacles are provided. However, this
approach can be challenging to apply if non-circular obstacles are considered.
The two-mode switching methodology is also adopted in [150], where the authors
develop the constant avoidance-angle reactive collision-avoidance algorithm and
combine it with pure-pursuit or line-of-sight path-following algorithms. Although
mathematical analysis is conducted for a sparse scenario with locally sensed
circular obstacles, there is no theoretical guarantee of the effectiveness of the
algorithm in an environment with many obstacles of non-circular shapes. Another
unified framework integrating both path following and collision avoidance is
proposed in [73], where the authors combine the Deformable Virtual Zone (DVZ)
method and the Lyapunov backstepping design. The DVZ method renders
the collision-avoidance behavior reactive, as only proximity information about
obstacles is used. However, there is an inherent limitation since the path-following
controller and the collision-avoidance controller may generate antagonistic control
commands. A heuristic switching mechanism is thereby introduced to address
this issue, but the corresponding rigorous mathematical analysis and formal
guarantees are limited.

Some studies focus on creating, modifying, or combining vector fields to realize
both path-following and collision-avoidance behaviors. In [173], given accurate
information of static obstacles, two vector fields, one for path following and the
other for collision avoidance, are combined with weights determined by a decay
function such that the adverse effects caused by the overlapping of two vector
fields can be mitigated. Different decay functions are numerically evaluated,
but there is no theoretical guarantee for collision avoidance or path following.
This approach is further developed in [151] to ensure minimal deviation from
the desired path during the obstacle-avoidance process, where the locations
and sizes of static circular obstacles are known. The paper also proposes a
numerical solution to detect singular points generated by the weighted sum of
two vector fields. Nevertheless, only circular desired paths and circular obstacles
are considered in the study. In [110], a family of 2D vector fields is suitably
blended to yield almost global feedback motion plans provided that the global
information of the environment populated with static circular obstacles is given.
This approach can steer a unicycle robot to a desired configuration, but it is not
always suitable for path-following tasks where the repetitive motion of traversing
along a path is required.

8.1.1 Contributions

This chapter proposes a general and unified framework in the first instance in R2

using a composite guiding vector field to enable trajectories to follow any sufficiently
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smooth desired paths occluded by static or moving obstacles of arbitrary shapes.
The guiding vector field is suitable to use in practical situations where obstacles
are detected by onboard sensors during the movement of a vehicle. Namely, a
vehicle does not need to know the global information about obstacles before it
follows a desired path, but rather it obtains in real time information about the
existence, shapes and velocities of obstacles locally. The composite guiding vector
field is obtained by smoothly combining two vector fields, one for path following
and the other for reactive collision avoidance, via bump functions. The use of
bump functions reduces the undesirable effects of integrating two vector fields
(c.f. [173]). To avoid trajectories getting stuck in a region, we also introduce a
switching mechanism with detailed theoretical analysis. Some discussions on
extending the composite guiding vector field to any higher-dimensional spaces
and considering robot models other than the single integrator model are also
provided.

The main contributions of this chapter develop the following advantages of the
proposed approach:

1) Our approach is general and flexible. The desired path and the boundaries of
the obstacles are any sufficiently smooth one-dimensional manifolds. Therefore,
they are either homeomorphic to the unit circle or the real line1, and thereby the
common convexity assumption is dropped [112]. In addition, the construction of
the composite vector field does not involve any specific geometric relationships
between the robot, the desired path, and the obstacles. Thus, the composite vector
field applies to general cases;

2) The collision-avoidance behavior in this approach is reactive in the sense
that obstacles are assumed unpredictable, and that the guiding vector field
acts as a feedback control command directly to the system without the often
time-consuming process of path (re)-planning or creation of global symbolic
maps. More specifically, since our approach does not fall into the traditional path-
planning category, we do not require the global knowledge about obstacles in the
design phase of the algorithm. Instead, local information is sufficient: whenever
a new obstacle is encountered, the composite vector field is easily updated by
adding a new component (see Remark 8.14), without compromising the original
theoretical guarantees for the path-following and collision-avoidance behaviors.
This enables real-time autonomous robot navigation and motion control without
knowing the global map. When moving obstacles are considered, we allow
measurement errors of the obstacles’ velocities, and provide some robustness
guarantees involving the time-varying guiding vector field (see Remark 8.34);

3) Our analysis is based on nonlinear systems theory, and there are rigorous
theoretical guarantees for both path-following and collision-avoidance motions,
which are often absent in the related literature as mentioned above. In particular,
we prove that there is no Zeno phenomenon in our proposed switching mecha-

1 An example of the latter sort of obstacle could be a river or a coastline.
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nism (see Theorem 8.30), which is introduced to deal with the common deadlock
situation;

4) Our composite vector field can be naturally extended to any higher-
dimensional spaces, including 3D Euclidean space2. Spaces with dimensions
higher than three correspond to abstract configuration spaces, such as robot arm
joint spaces. Thus, the composite vector field is, for instance, directly applicable
in the low-level control of robot arms in the joint space.

In contrast to these advantages mentioned above, we also prove a general
result showing a common limitation of combining two vector fields (see Lemma
8.20). We regard this result as another contribution since it gives a theoretical
explanation of the common phenomenon that singular points exist when two
vector fields are blended, regardless of what decay functions (or bump functions)
one uses to mitigate the overlapping effects. This result can be regarded as a
counterpart of the well-known limitation of motion-planning algorithms based
on the negative gradient of a potential/navigation function [68], [120], both
issues being fundamentally topological. Note, though, that our settings and
approach are fundamentally different from those based on a potential/navigation
function. For example, our composite vector field is not the (negative) gradient
of any potential/navigation function, and we do not require a destination point
to which trajectories converge. We also do not restrict consideration to a compact
workspace (c.f. [68], [120]). One consequence of these differences is that the
limitation of our approach can sometimes be removed (see Remark 8.21), and
thereby, perhaps surprisingly, global convergence of trajectories to the desired
path with the collision-avoidance guarantee is possible (see Remark 8.21).

8.1.2 Chapter structure

The remainder of this chapter is organized as follows. Section 8.2 formulates the
problem. In Section 8.3, the systematic construction of the composite vector field
is elaborated. Then Section 8.4 presents the convergence results of the integral
curves of the composite vector field. Section 8.5 introduces the switching mech-
anism to deal with the deadlock problem and replaces some difficult technical
conditions in Theorem 8.24. Three extensions of our approach are discussed in
Section 8.6, and simulation results are illustrated in Section 8.7. Finally, Section
8.8 concludes the chapter.

2 In 2D, the desired path and the obstacle boundaries are one-dimensional. However, in the ambient
3D space, the desired path is still one-dimensional but the obstacle boundaries need to be two-
dimensional. See Section 8.6.2 for more details.
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8.2 problem formulation
In this section, we introduce related notations, essential assumptions and formu-
late the problem.

8.2.1 Preliminaries

A discrete set A in Rn is a set consisting of only isolated points; that is, for
every point p ∈ A, there exists an open neighborhood Up ⊆ Rn of p, such that
Up ∩A = {p}. A discrete set is at most countable (i.e., finite or countably infinite).
A function f : Ω ⊆ Rm → Rn is bounded away from zero in Ω if there exists a
real number c > 0, such that ‖ f (x)‖ > c for all x ∈ Ω.

8.2.2 Desired paths

The desired path P ⊆ R2 is defined by

P = {ξ ∈ R2 : φ(ξ) = 0}, (8.1)

which is the zero-level set of the twice continuously differentiable function
φ : R2 → R. This description of the desired path P does not require any
parametrization, and it is common in vector-field guided path-following algo-
rithms [24], [28], [36], [50], [89], [98], [156], [157]. In addition, one can naturally
assume that P is a one-dimensional connected submanifold in R2. Thus, P is
either homeomorphic to a circle if it is compact, or the real line R otherwise
[76, Theorem 5.27]. One can use the value |φ(ξ)| at a point ξ ∈ R2 to crudely
approximate the distance dist(ξ,P) between a point ξ ∈ R2 and the path P
under a mild assumption shown later (i.e. Assumption 8.7). For simplicity, we
call φ(ξ) the (signed) path-following error at a point ξ ∈ R2.

8.2.3 Obstacles, reactive areas and repulsive areas

At each time instant t ≥ 0, we consider a finite set of obstacles Ot
all = {Ot

i ⊆
R2 : i ∈ I}, where m is the total number of obstacles and I = {1, 2, . . . , m}. We
assume that the obstacles are of finite sizes at every time instant3:

Assumption 8.1. At any time instant t ≥ 0, the set Ot
i is bounded for any i ∈ I .

3 Obstacles can have infinite sizes as well; i.e., at any/some time instant t ≥ 0, the set Ot
i is unbounded.

This is useful, for example, when one wants to restrict a vehicle’s movement within a compact space,
so the obstacle is the unbounded space beyond this compact space. However, if this unbounded
obstacle occludes the desired path (i.e., Ot

i ∩ P 6= ∅), then a trajectory might not be able to return to
the desired path, and the magnitude of the path-following error can grow infinitely large. To avoid
this undesirable consequence and for simplicity, we do not consider unbounded obstacles in this
chapter.
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(a) Desired path P , reactive boundary R, repulsive boundary Q, and
the obstacle (the red irregular object)

(b) Repulsive area inQ and non-repulsive
area exQ

(c) Reactive area inR and non-reactive
area exR

Figure 8.1: Illustrations of concepts.

We do not deal with the specific form of the obstacles Ot
all, but we define some

“boundaries” to enclose each obstacle (or to enclose a collection of obstacles if
they are very close to each other) such that avoiding collision with the obstacles is
simplified to avoiding collision with these boundaries regardless of the possibly
complicated geometric shapes of the obstacles. Specifically, fixing t, we define
the reactive boundary Rt

i and the repulsive boundary Qt
i around the obstacle Ot

i as
follows:

Rt
i = {ξ ∈ R2 : ϕi(ξ, t) = 0}, (8.2)

Qt
i = {ξ ∈ R2 : ϕi(ξ, t) = ci}, (8.3)

where ϕi : R2×R → R is a twice continuously differentiable function and ci 6= 0
is a constant. The smoothness of the function ϕi with respect to t represents the
smooth motion of an obstacle. The definitions (8.2) and (8.3) are similar to (8.1)
for simplicity. By Assumption 8.1, Rt

i and Qt
i are compact. We also assume that at

each time instant t ≥ 0, the boundaries Rt
i and Qt

i are one-dimensional connected
submanifolds in R2. The reactive boundary Rt

i decomposes the plane into the
“interior”: the bounded open subset denoted by inRt

i , and the “exterior”: the
unbounded open subset denoted by exRt

i , and there holds Rt
i = ∂ inRt

i = ∂ exRt
i

[51, Section VI.52], where ∂(·) denotes the boundary of a set (·). For convenience,
we call inRt

i the (open) reactive area and exRt
i the (open) non-reactive area. Similarly,
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for the repulsive boundary Qt
i , we define the (open) repulsive area inQt

i and the
(open) non-repulsive area exQt

i , and there holds Qt
i = ∂ inQt

i = ∂ exQt
i (see Fig. 8.1).

We simply replace “open” by “closed” to refer to the closure of these sets (e.g.
inRt

i is the closed reactive area, where (·) denotes the closure of a set). Intuitively,
the reactive area inRt

i is the area where the robot can sense the obstacles and
needs to be reactive to obstacles, and the repulsive area inQt

i is the “dangerous”
area where the robot is forbidden to enter. We make the following intuitively
reasonable standing assumptions:

Assumption 8.2. There holds Ot
i ⊆ inQt

i ⊆ inRt
i and dist(Qt

i ,Rt
i) > 0 for all

t ≥ 0.

Assumption 8.3. There holds P 6⊆ ⋃i∈I
inRt

i for all t ≥ 0.

Assumption 8.4. There holds dist(inRt
i ,

inRt
j) > 0 for all i 6= j ∈ I and t ≥ 0.

Assumption 8.2 stipulates the relative positioning of the obstacles, the reactive
boundary, and the repulsive boundary. Assumption 8.3 means that the desired
path cannot be fully covered by obstacles; otherwise, path following is meaning-
less. Assumption 8.4 implies that any two obstacles are sufficiently far away such
that any two reactive areas are disjoint4.

8.2.4 Problem formulation

When there are no obstacles, the vector field guided path following (VF-PF)
problem, as defined in Problem 1.1, requires one to design a vector field such
that the integral curves of the vector field will converge to and propagate along
the desired path defined in (8.1). If there are obstacles on/near the desired path,
the vector field needs to be modified to meet additional requirements, leading
to the problem of Vector-Field guided Path-Following with Collision-Avoidance
(VF-CAPF):

Definition 8.5 (VF-CAPF Problem). Design a continuously differentiable vector
field χ : R ×R2 → R2 for ξ̇(t) = χ(t, ξ(t)) such that:

1. (Path-following). In the absence of obstacles, the vector field χ solves the VF-PF

problem.

2. (Repulsive inQt). If ξ(0) /∈ ⋃i∈I
inQ0

i , then ξ(t) /∈ ⋃i∈I
inQt

i for t ≥ 0.5

4 If two reactive areas overlap, one can regard the corresponding two obstacles as one big (disconnected)
obstacle and define a bigger reactive area.

5 Since the closed repulsive areas are “dangerous”, it is naturally assumed that the initial conditions
do not include these areas. Nevertheless, as shown later, our approach can still guarantee that any
trajectory starting from the closed repulsive areas will leave eventually (see Corollary 8.17 and the
first simulation example in Section 8.7).
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3. (Bounded Path-following Error). There exists M > 0 such that the path-
following error satisfies |φ(ξ(t))| ≤ M for t ≥ 0. Moreover, for any connected
time interval Ξ ⊆ R satisfying ξ(t) /∈ ⋃i∈I

inRt
i for t ∈ Ξ, the absolute path-

following error |φ(ξ(t))| is strictly decreasing over Ξ.

4. (Penetrable inRt
i ). Fix i ∈ I , and consider trajectories ξ(·) starting from

almost all initial conditions. If there exists t1 > 0 such that ξ(t1) ∈ inRt1
i ,

then there exists another (possibly non-unique) time instant t2 > t1 such that

ξ(t2) /∈ inRt2
i . In addition, the trajectory cannot cross the reactive boundary

Rt
i infinitely fast; i.e., inf{t2 − t1 : t2 > t1, ξ(t2) /∈ inRt2

i } > 0.

Remark 8.6. Objective 2 ensures that trajectories do not collide with obstacles.
As obstacles might be right on the desired path, Objective 3 requires that the
magnitude of the path-following error should be at least bounded by some
constant. In addition, the magnitude of the path-following error should be
decreasing along a trajectory if no obstacles are nearby. Objective 4 prevents
trajectories starting from almost all initial points from staying in a reactive area
forever such that the repetitive motion of following the desired path is possible
(i.e., a reactive area is always penetrable). “Almost all” means the set of initial
points of trajectories that cannot leave the reactive area forms a zero-measure
set. Moreover, Objective 4 also requires that the Zeno phenomenon [82] cannot
occur. /

For simplicity, we consider static obstacles first (in Sections 8.3, 8.4 and 8.5).
Therefore, the superscript t in the notations are removed, and the vector field
χ : R2 → R2 becomes time-invariant. The extension to moving obstacles and the
time-varying vector field χ : R ×R2 → R2 will be deferred until Section 8.6.

8.3 composite vector field

8.3.1 Path-following vector field and reactive vector field

The basic task of vector-field guided path-following problem is designing a vector
field that guides a robot to move towards and circulate along the desired path.
From the definitions of the desired path in (8.1) and the reactive boundary in
(8.2), using the approach in [63], we can define the corresponding vector fields
χP , χRi : R2 → R2 associated with P and Ri by

χP (ξ) = γ0E∇φ(ξ)− kpφ(ξ)∇φ(ξ), (8.4)
χRi (ξ) = γiE∇ϕi(ξ)− kri ϕi(ξ)∇ϕi(ξ), i ∈ I (8.5)
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where γi ∈ {1,−1}, i ∈ {0} ∪ I determines the propagation direction along the
desired path or the reactive boundaries, E =

[ 0 −1
1 0

]
is the 90◦ rotation matrix

and kp, kri are positive gains. The latter term of each equation above is a signed
gradient, and guides integral curves to converge towards the desired path or the
reactive boundaries, whereas the first term is perpendicular to the gradient and
provides a propagation speed along the desired path or the reactive boundaries.
For simplicity and without loss of generality, we assume γi = 1 for all i ∈ {0} ∪ I
throughout the subsequent theoretical development by default.

We call χP the path-following vector field and χRi the reactive vector field. The
singular set of the vector fields χP and χRi are denoted by CP and CRi respectively
and defined below:

CP = {ξ ∈ R2 : χP (ξ) = 0} = {ξ ∈ R2 : ∇φ(ξ) = 0},
CRi = {ξ ∈ R2 : χRi (ξ) = 0} = {ξ ∈ R2 : ∇ϕi(ξ) = 0}.

Each point is called a singular point, where the corresponding vector field vanishes.
In this case, the singular points happen to be the critical points of φ or ϕi, but
this is not true for vector fields defined in other higher-dimensional (Euclidean)
spaces (see Chapters 4, 5 or 9). Since P , Ri and Qi are one-dimensional connected
submanifolds in R2, 0 is a regular value for φ and ϕi, and ci is another regular
value for ϕi [77, p. 105]. Therefore, there are no singular points on P , Ri and Qi;
i.e., P ∩ CP = ∅, Ri ∩ CRi = ∅ and Qi ∩ CRi = ∅.

8.3.2 Behavior with a single vector field

Let χ = χP or χ = χRi , and we consider the following autonomous differential
equation:

ξ̇(t) = χ(ξ(t)). (8.6)

Given an initial condition ξ(0) ∈ R2, the existence and uniqueness of solutions
to the above differential equation is guaranteed, as χ(ξ) is continuously differ-
entiable with respect to ξ (see Theorem 2.1). Taking χ = χP as an example, it
is proved in [63, Lemma 2] that a trajectory ξ(t) converges to either the desired
path P or the singular set CP under the following assumption:

Assumption 8.7 ([63]). For any κ > 0, there holds inf{|φ(ξ)| : dist(ξ,P) ≥ κ} > 0.
Similarly, for any κ > 0, there holds inf{‖∇φ(ξ)‖ : dist(ξ, CP ) ≥ κ} > 0.

Note that corresponding to the same desired path P , there is an infinite number
of choices6 of the function φ in (8.1). This assumption restricts one to choose a

6 For example, if P = φ−1(0), then one can define φ̄(·) = φ(·)Λ(·), where Λ : R → R and Λ(p) 6= 0
for any p /∈ P = φ−1(0). A trivial choice of Λ(·) is any non-zero constant function. Therefore,
P = φ−1(0) = φ̄−1(0) and φ̄ is another function to characterize the same desired path P .
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“valid” function φ such that when |φ(ξ(t))| → 0 as t → ∞ along an infinitely-
extendable trajectory ξ(t), then dist(ξ(t),P) → 0 as t → ∞ (guaranteed by
the first part of the assumption), and when ‖∇φ(ξ(t))‖ → 0 as t → ∞ then
dist(ξ(t), CP )→ 0 as t→ ∞ (guaranteed by the second part of the assumption).
The assumption holds for all the examples presented later in this chapter. Under
this assumption, we have the following important dichotomy convergence lemma.

Lemma 8.8 (Dichotomy convergence, [63]). Under Assumption 8.7, let χP : R2 →
R2 be the vector field associated with the one-dimensional connected submanifold P
described by (8.1). Given an initial condition ξ(0) ∈ R2, any trajectory of ξ̇(t) =
χP (ξ(t)) converges either to P or the singular set CP as t→ t∗, where t∗ ≤ ∞.

Remark 8.9 (Time-invariant scaling). The dichotomy convergence lemma continues
to hold up to a time-invariant positive scaling (e.g., the normalization) of the
vector field, such that the orientation of each vector of χP is not modified [25,
Proposition 1.14]. /

In the scenario of path following, the convergence of trajectories to the singular
set CP is not desirable, and therefore, it is important to know how large the set
of initial points of trajectories converging to CP is. A related result (Corollary
5.19 in Chapter 5) shows that, under some conditions, the singular set CP is
non-attractive; that is, there does not exist an open neighborhood U of CP such
that every trajectory starting from U converges to the singular set CP . However,
the non-attractiveness of CP does not exclude the possibility that some trajectories
still converge to CP ; neither does it imply that the set of initial conditions of
trajectories converging to CP is of measure zero. We use the notationW(CP ) to
represent the set of initial conditions for trajectories of (8.6) to asymptotically
converge to the singular set CP . Precisely,

W(CP ) := {ξ0 ∈ Rn : ξ(0) = ξ0, dist(ξ(t), CP )→ 0 as t→ ∞}.

If CP consists of only one point denoted by c, which is also an equilibrium of
(8.6), then we define W(c) := W(CP ), which is referred to as the local inset
of c [124, p. 39]. If the singular set CP is discrete or the function φ is real
analytic, a trajectory converging to CP actually converges to a single point in CP ,
and therefore,W(CP ) =

⋃
c∈CP W(c) (see Theorems 7.5 and 7.7). For any point

c ∈ CP , the Hessian matrix at this point is denoted by Hφ(c) := ∇2φ(c), which is
a symmetric matrix since φ ∈ C2. Now we state the following result regarding
how “large” the set of initial conditions which render trajectories converging to
the singular set CP .

Lemma 8.10. Suppose the singular set CP is discrete. If the matrix φ(c)Hφ(c) has at
least one negative eigenvalue for every point c ∈ CP , thenW(CP ) =

⋃
c∈CP W(c) is a

set of measure zero. If φ(c)Hφ(c) has all negative eigenvalues for every point c ∈ CP ,
thenW(CP ) = CP .
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Proof. It is proved in [63, Lemma 3 and Corollary 1] that if φ(c)Hφ(c) has
at least one negative eigenvalue for c ∈ CP , then µ(W(c)) = 0, where µ
is the Lebesgue measure. Since CP is discrete, it is at most countable. By
the non-negativity and subadditivity properties of the Lebesgue measure,
0 ≤ µ(W(CP )) = µ

(⋃
c∈CP W(c)

)
≤ ∑c∈CP µ(W(c)) = 0. Therefore, W(CP )

is of measure zero. The last statement of the lemma is due to Lemma 3 and
Corollary 1 in [63].

Remark 8.11. If the Hessian matrix Hφ(c) of a critical point c ∈ CP is non-singular,
this critical point is called non-degenerate. If every critical point c ∈ CP of φ
is non-degenerate, then φ is a Morse function [86, Definition 1.14]. If φ is a
Morse function, then every critical point in CP is isolated [86, Corollary 1.12],
and thus the singular set CP is discrete. Since almost all smooth functions are
Morse functions7, the condition of CP being discrete is not conservative. In many
practical examples, the set CP is even finite8 [50], [63], [74], [157]. In particular, if
φ is a Morse function and ∇φ(ξ) 6= 0 when ‖ξ‖ is sufficiently large, then CP is
finite. /

Note that Lemma 8.8 and Lemma 8.10 still hold if P , φ, Hφ, χP , and CP are
replaced by Ri, ϕi, Hϕi , χRi , and CRi respectively.

8.3.3 Smooth zero-in and zero-out functions

In preparation for studying the simultaneous effects of two vector fields, we
will introduce some special functions to “blend” different vector fields, which is
inspired by the following result.

Lemma 8.12 (Existence of smooth bump functions, [77, Proposition 2.25]). Given
a nonempty open subset B ⊆ Rn and a nonempty closed subset A ⊆ Rn such that
A ⊆ B, there exists a smooth (i.e., infinitely differentiable) function u : Rn → R such
that u(x) ≡ 1 for x ∈ A, 0 ≤ u(x) ≤ 1 for x ∈ B \A and u(x) ≡ 0 for x ∈ Rn \ B.

The function u in Lemma 8.12 is a smooth bump function, which is a smooth
real-valued function that attains 1 on a compact set and attains zero beyond an
open neighborhood of that set [77, pp. 40-47]. It is obvious that there also exists
an “inverted” bump function t : Rn → R which attains 0 on a compact set
and attains 1 beyond an open neighborhood of that set (e.g., t = 1−u). These
functions are ideal to “blend” different vector fields by keeping or removing some
parts of the vector field to possibly reduce the undesirable effects of overlapping,
while the original smoothness of the vector fields is still maintained. We have the
following corollary.

7 Precisely, Morse functions form an open, dense subset of the space of smooth functions [56, Chapter
6, Theorem 1.2].

8 When φ is real analytic, it has been proved in [50] that CP is of measure zero, which roughly indicates
that CP is not very “large”. Nevertheless, in general, it is possible that CP is not discrete or bounded,
but these examples seem quite artificial (see Chapters 3 and 5).
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(b) A smooth zero-out bump functionuRi

Figure 8.2: Illustration of smooth zero-in and zero-out bump functions.

Corollary 8.13. For any reactive boundary Ri in (8.2) and repulsive boundary Qi in
(8.3), i ∈ I , there exist smooth functions tQi ,uRi : R2 → [0, ∞) defined below:

tQi (ξ) =


0 ξ ∈ inQi

Si(ξ) ξ ∈ exQi ∩ inRi,

1 ξ ∈ exRi

uRi (ξ) =


1 ξ ∈ inQi

Zi(ξ) ξ ∈ exQi ∩ inRi,

0 ξ ∈ exRi

(8.7)

where Si : exQi ∩ inRi → (0, 1) and Zi : exQi ∩ inRi → (0, 1) are smooth functions.

Intuitively, we call tQi a smooth zero-in function with respect to Qi and uRi a
smooth zero-out function with respect to Ri (see Fig. 8.2). Since tQi is smooth, it
is evident that Si(ξ) vanishes smoothly to 0 as ξ approaches Qi, and smoothly
approaches value 1 as ξ approaches Ri, and the converse applies for Zi(ξ). One
can similarly define the smooth zero-out function uQi (ξ) for Qi and the smooth
zero-in function tRi for Ri, but it is not necessary for the construction of a
composite vector field to be discussed later.

8.3.4 Composite vector field

We use smooth zero-in and zero-out functions to “blend” different vector fields
and obtain the composite vector field χc : D ⊆ R2 → R2 as follows:

χc(ξ) =

(
∏
i∈I
tQi (ξ)

)
χ̂P (ξ) + ∑

i∈I

(uRi (ξ)
χ̂Ri (ξ)

)
, (8.8)
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where ˆ(·) is the normalization notation (i.e., v̂ = v/‖v‖ for a non-zero vector
v ∈ Rn), and D = R2 \ (⋃i CRi

⋃ CP ) is the domain on which the composite
vector field is well-defined. Under Assumption 8.4, (8.8) is equivalent to:

χc(ξ)
(8.7)
=


χ̂Ri (ξ) ξ ∈ inQi ∩D
Si(ξ)χ̂P (ξ) + Zi(ξ)χ̂Ri (ξ) ξ ∈ exQi ∩ inRi ∩D
χ̂P (ξ) ξ ∈ D \ (

⋃
k∈I

inRk),
(8.9)

for each i ∈ I . From (8.9), one observes that only the reactive vector field χRi

is active in the corresponding closed repulsive areas inQi, and only the path-
following vector field χP is active in the union of the closed non-reactive areas⋃

i∈I
exRi, whereas both the path-following vector field χP and the reactive vector

field χR are active in the intersection of the reactive area and the non-repulsive
area; namely,Mi := exQi ∩ inRi, called the (open) mixed area for convenience. The
closure of this area Mi is called the closed mixed area. Note that the composite
vector field χc is not “mixed” on the reactive and repulsive boundaries. We
consider the following system:

ξ̇(t) = χc(ξ(t)), ξ(0) ∈ D. (8.10)

Due to the continuous differentiability of the right-hand-side, the existence and
uniqueness of solutions is guaranteed (see Theorem 2.1). We define the composite
singular set:

Cc := {ξ ∈ D : χc(ξ) = 0}, (8.11)

which contains all the equilibria of (8.10). Note that this set may contain some
singular points in

⋃
i CRi

⋃ CP , and also new singular points due to the blending
of the two vector fields in the union of the mixed area

⋃
iMi.

Remark 8.14 (Local information). In practice, only locally sensed obstacles need
to be considered for the computation of the composite vector field χc. From the
compact expression in (8.8), it seems necessary to know all the obstacles in the
workspace, but this is not true if one observes the expanded form in (8.9). When
a trajectory enters a reactive area, meaning that a robot can detect an obstacle,
the composite vector field χc in (8.9) only depends on the current reactive vector
field χRi and the path-following vector field χP but not on the knowledge of
other obstacles. /
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8.4 analysis of the composite vector field
Under Assumption 8.4 and in view of (8.9), different reactive vector fields χRi
do not overlap. Therefore, without loss of generality, we only consider the case
of one obstacle; i.e., the index set I is a singleton. Thus, the subscripts i are
removed from the notations in this section for simplicity. We also assume that the
obstacle is sufficiently close to the desired path (precisely, inR∩P 6= ∅) such that
collision avoidance is necessary. Now, the composite vector field (8.9) simplifies
to

χc(ξ) =


χ̂R(ξ) ξ ∈ inQ∩D
S(ξ)χ̂P (ξ) + Z(ξ)χ̂R(ξ) ξ ∈ exQ∩ inR∩D
χ̂P (ξ) ξ ∈ exR∩D,

(8.12)

where D = R2 \ (CR ∪ CP ). An intuitive illustration is shown in Fig. 8.3. Before
presenting the first result, we define the repulsiveness of a set below.

Definition 8.15 (Repulsiveness of sets). A nonempty set A ⊆ R2 is repulsive with
respect to the dynamics ξ̇ = f (ξ), where f : R2 → R2 is Lipschitz continuous, if
for each point ξ0 ∈ A, there exists T > 0, such that the trajectory ξ(t) with the
initial condition ξ(0) = ξ0 satisfies ξ(t) /∈ A for t ≥ T. If this holds for almost
every point in A except for a set of measure zero, then A is called almost repulsive.
Namely, A is almost repulsive if there exists a subset B ⊆ A of measure zero such
that A \ B is repulsive.

The following lemma states the positive invariance property of the non-
repulsive area exQ. Namely, for all ξ(0) ∈ exQ, it follows that ξ(t) ∈ exQ
for t ≥ 0.

Lemma 8.16 (Positive invariance of exQ). IfW(CR)∩Q = ∅, then the non-repulsive
area exQ is positively invariant with respect to (8.10).

Proof. We prove this by contradiction. Suppose exQ is not positively invariant,
then there exists ξ(0) ∈ exQ and T > 0 such that ξ(T) ∈ Q. Note that in the
closed repulsive area inQ, the differential equation is simplified to ξ̇ = χ̂R(ξ).
Also note that the trajectory will leave Q later; otherwise, this implies Q contains
a periodic orbit and thus contradicts Lemma 8.8. Therefore, there exists some
time instant T′ > T such that ξ(T′) /∈ Q. Next, we prove that the trajectory
cannot go into the interior inQ. Suppose, on the contrary, ξ(T′) ∈ inQ. Since
W(CR) ∩Q = ∅, the trajectory will not converge to CR. Therefore, the trajectory
will reach the boundary Q again at some time instant T′′ > T′; otherwise, again
there is a contradiction of Lemma 8.8. Hence, on the time interval Ξ := [T, T′′],
ξ(t) ∈ inQ, and ξ(T), ξ(T′′) ∈ Q. For convenience, we denote the segment of
trajectory ξ(t) over Ξ by ξ(Ξ) := {ξ(t) ∈ R2 : t ∈ Ξ}, which is the image of the
time interval Ξ under ξ. Since ξ(Ξ) is closed and ξ(Ξ) ⊆ inQ, the segment of
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(a) VF χ̂P for desired path P (b) VF χ̂R for reactive boundary R

(c) VFtQ(ξ)χ̂P (ξ) (d) VFuR(ξ)χ̂R(ξ)

(e) Composite VFtQ(ξ)χ̂P (ξ) +uR(ξ)χ̂R(ξ)
Figure 8.3: Construction of the composite vector field χc in (8.12). Each arrow in the

subfigures represents a vector of the corresponding vector field evaluated at
the position of the tail of the arrow. In (e), the green arrows belong to the

reactive vector field χR and are all in inQ. The red arrows belong to the
path-following vector field χP and are all in exR. The blue arrows belong to
the weighted sum of χP and χR and are all in the mixed areaM = exQ∩ inR.

trajectory ξ(Ξ) is compact in R2. For what follows, we consider the trajectory over
the time interval Ξ. Again, note that the differential equation (8.10) is simplified
to ξ̇ = χ̂R(ξ) over this time interval. Choose the Lyapunov function candidate
V(ϕ(ξ)) = ϕ2(ξ)/2, then

d
dt

V(ϕ(ξ)) = −kr
Z(ξ)
‖χR(ξ)‖

ϕ2(ξ)‖∇ϕ(ξ)‖2. (8.13)

Due to the uniqueness of solutions and W(CRi ) ∩ Q = ∅, we have
d
dt V(ϕ(ξ(t))) < 0 for t ∈ Ξ. However, the fact that ξ(T), ξ(T′′) ∈ Q contradicts
the strict decreasing property of V(ξ(t)) for t ∈ Ξ (on the repulsive boundary Q,
ϕ attains the same value). The contradiction implies that the trajectory cannot go
from the boundary Q to the interior inQ. Furthermore, the strict decreasing prop-
erty of V(ξ(t)) also proves the repulsiveness of the boundary Q; more precisely,
for every ξ(0) ∈ Q, we have ξ(t) /∈ Q for all t > 0. Combining the previous
arguments with the uniqueness of solutions shows that once the trajectory starts
from the non-repulsive area exQ, it will never reach the repulsive boundary Q
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or the repulsive area inQ. Thus the non-repulsive area exQ is indeed positively
invariant.

The almost repulsiveness of the closed repulsive area inQ is stated in the
following corollary.

Corollary 8.17 (Almost repulsiveness of inQ). The set inQ \W(CR) is repulsive. If
the assumptions of Lemma 8.10 hold9, then inQ is almost repulsive.

Proof. We need to show that if ξ(0) ∈ inQ \W(CR), then there exists T > 0, such
that ξ(t) /∈ inQ \W(CR) for t ≥ T. Since ξ(0) ∈ inQ \W(CR), we can use the
same argument as in Lemma 8.16 and conclude that there exists a time instant T,
such that ξ(T) ∈ exQ. Due to the positive invariance of exQ, ξ(t) /∈ inQ \W(CR)
for t ≥ T. If the assumptions of Lemma 8.10 hold, then the local insetW(CR) is
of measure zero, so inQ is almost repulsive by Definition 8.15.

The following lemma states that the absolute path-following error |φ(ξ(t))| is
indeed bounded.

Lemma 8.18 (Bounded path-following error). If CP is bounded, then the absolute
path-following error |φ(ξ(t))| of any trajectory ξ(t) of (8.10) is bounded.

Proof. Suppose a trajectory of (8.10) is defined on the time interval T = [0, Tf ],
where Tf ≤ ∞. We want to prove that there exists a positive finite constant
M such that |φ(ξ(t)) ≤ M for all t ∈ T . First, it is obvious that the absolute
path-following error |φ(·)| : R2 → R is continuous. Depending on where a
trajectory ξ(t) lies, three cases are discussed.

Case 1: Suppose the trajectory ξ(t) always lies in the closed reactive area
inR, then |φ(ξ(t))| attain its maximum value on the compact set inR. Namely,
|φ(ξ(t))| ≤ M1 for all t ∈ T , where M1 = max

p∈inR |φ(p)|.
Case 2: Suppose the trajectory ξ(t) always lies in the closed non-reactive area

exR, then the differential equation (8.10) is reduced to ξ̇ = χ̂P (ξ). By Lemma 8.8,
the trajectory either converges to the desired path P or the singular set CP . a)
Suppose the trajectory ξ(t) converges to the desired path P as t → Tf ; that is,
|φ(ξ(t))| → 0 as t→ Tf . Then, fixing ε > 0 such that |φ(ξ(0))| > ε, there exists
0 < T′ < Tf , such that |φ(ξ(t))| < ε for t > T′. Let γ := max0≤t≤T′ |φ(ξ(t))|,
then the magnitude of the path-following error is bounded by max{ε, γ} =
γ = |φ(ξ(0))|, where the last equality is due to the decreasing property of the
Lyapunov function V = 1/2 φ2(ξ), which will be elaborated in Case 3 later. b) If
the trajectory ξ(t) converges to the set CP (it is naturally assumed that CP ⊆ exR,
otherwise it is trivial), then there exists 0 < T′′ < Tf , such that dist(ξ(t), CP ) < ε

for t > T′′. It follows that ξ(t) ∈ C ′P := {p ∈ R2 : dist(p, CP ) ≤ ε} for t > T′′.

9 In this case, replace P , φ, χP , and CP with R, ϕ, χR, and CR respectively in the lemma.
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Since CP is bounded (hence compact), the set C ′P is compact. Therefore, we can
let β := maxx∈C ′P |φ(x)|. Let α := max0≤t≤T′′ |φ(ξ(t))|, then the magnitude of
the path-following error is bounded by max{α, β}. Overall, in both sub-cases
a) and b), the magnitude of the path-following error |φ(ξ(t))| is bounded by
M2 := max{γ, α, β}.

Case 3: Suppose the trajectory lies alternately in exR and inR. First, we suppose
ξ(0) ∈ inR. Denote all maximal connected closed intervals by ρj ⊆ T , j = 1, 2, . . . ,

such that ξ(t) ∈ inR for t ∈ ρj. Similarly, denote all maximal connected closed
intervals by δk ⊆ T , k = 1, 2, . . . , such that ξ(t) ∈ exR for t ∈ δk. For t ∈ ⋃j ρj,
it follows that |φ(ξ(t))| ≤ M1 according to Case 1. Therefore, we only need
to consider the time intervals δk over which the trajectory is in the closed non-
reactive area exR. For convenience, the minimum value in δk is denoted by δ1

k (i.e.,
the first time instant). As Case 2, the differential equation (8.10) is reduced to
ξ̇ = χ̂P (ξ). IfW(CP ) ∩R = ∅, given ξ(δ1

k ) ∈ R, the trajectory will not converge
to any points in CP . Using the Lyapunov function candidate V(φ(ξ)) = 1/2 φ2(ξ)
and taking the time derivative, one obtains

d
dt

V(φ(ξ)) = −kp
S(ξ)
‖χP (ξ)‖

φ2(ξ)‖∇φ(ξ)‖2.

This shows that V(φ(ξ(t))), hence |φ(ξ(t))| is decreasing as t increases. Therefore,
for each time interval δk, |φ(ξ(t))| attains its maximum value maxt∈δk |φ(ξ(t))| =
|φ(ξ(δ1

k ))| ≤ M3, where M3 := maxp∈R |φ(p)| (maximum attainable due to the
compactness of the boundary R). Therefore, for all t ∈ ⋃k δk, |φ(ξ(t))| ≤ M3 ≤
M1. Now we suppose ξ(0) ∈ exR, then using the same analysis as before, it
can be easily concluded that for all t ∈ ⋃k δk, |φ(ξ(t))| ≤ max{M1, d0}, where
d0 = |φ(ξ(0))|. If the trajectory converges to the singular set CP , then using the
same analysis discussed in Case 2, the absolute path-following error |φ(ξ(t))|
is bounded by max{α, β}. Overall, the magnitude of the path-following error
|φ(ξ(t))| is bounded by M3 := max{M1, α, β}. To sum up, the magnitude of the
path-following error |φ(ξ(t))| is bounded by M := max{M1, α, β, γ}.
Remark 8.19. Suppose the trajectory does not converge to the singular set CP , then
it is interesting to note that the upper bound M of the absolute path-following
error |φ(ξ(t))| is only related to the initial error γ = |φ(ξ(0))| and the largest error
between the reactive area inR and the desired path P (i.e., M1 = max

p∈inR |φ(p)|).
Thus this upper bound can be reduced by starting a trajectory near the desired
path or shrinking the reactive area. /

In the sequel, the properties of the mixed areaM = exQ∩ inR will be inves-
tigated. First it can be shown that the closed mixed area M is not positively
invariant. Since P 6⊆ inR, there exists at least one vector on the reactive boundary
which points from the boundary to the desired path. More precisely, there exists
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p ∈ R such that χc(p) = a(p)χ̂P (p) is not in the tangent cone10of the closed
mixed areaM. By the Nagumo’s theorem (see Theorem 2.13), the closed mixed
areaM is not positively invariant. Thus there exists at least one point ξ0 ∈ M
and T > 0, such that the trajectory at time T satisfies ξ(T) /∈ M. However, the
non-positive-invariance property of the closed mixed area is not sufficient to
guarantee that any trajectory will not be trapped in this area. In fact, the next
lemma demonstrates a limitation of combining two vector fields.

Lemma 8.20 (A common limitation). If CP ∩ inR = ∅, then there is at least one
saddle point of (8.10) in the mixed areaM.

Proof. Note that on the repulsive boundary Q, the vector field is simplified to

χ̂R(ξ) =

√
k2

r c2 + 1
‖χR‖

· 1√
k2

r c2 + 1
(E− krcI)︸ ︷︷ ︸

F

∇ϕ, (8.14)

where I ∈ R2×2 is the identity matrix and F ∈ SO(2) is a rotation matrix.
Therefore, the (Poincaré) index (see Definition 2.16) of the boundary Q is 1 since
the vector χ̂R(ξ) rotates an angle of 2π counterclockwise when a point ξ traverses
the boundary Q in the counterclockwise direction (this also implies that there is
at least one equilibrium point in inQ). On the reactive boundary R, the vector
field is simplified to χ̂P (ξ). Now imagine that the whole plane is filled with only
χ̂P (ξ), given CP ∩ inR = ∅, the index of the reactive boundary R is 0. Since the
vector field remains the same on R for the composite vector field χc, the index of
R is still 0. As the composite vector field χc is still continuous, we can conclude
by the index theorem (see Theorem 2.17) that there must exist at least one saddle
point in the mixed areaM. This is justified as follows. By the index theorem, the
index of a saddle point is −1, and the index of a node or a focus or a center is
1. Denote the number of saddle points in the repulsive area inQ and the mixed
areaM by a1 ≥ 0 and a2 ≥ 0, respectively, and denote the total number of nodes,
foci and centers in the repulsive area inQ and the mixed areaM by b1 ≥ 0 and
b2 ≥ 0, respectively. Since the index of the repulsive boundary Q is 1, we have
−a1 + b1 = 1. Similarly, since the index of the reactive boundary R is 0, we have
−a1 + b1 − a2 + b2 = 0, which implies that a2 = b2 + 1 ≥ 1. Therefore, at least
one saddle point exists inM.

Remark 8.21. We impose the condition CP ∩ inR = ∅ here because this condition
holds in many practical examples. For example, when the desired path is a
straight line characterized by φ(x, y) = y, then CP = ∅ and the condition
CP ∩ inR = ∅ automatically holds. This condition is also satisfied for all examples

10 The tangent cone to a closed set A ⊆ R2 at a point x ∈ R2 is defined as TA(x) = {v ∈ R2 :
lim infh→0 dist(x + hv,A)/h = 0}.
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Figure 8.4: In this example, the reactive area inR is enlarged such that CP ∩ inR 6= ∅, and
thereby Lemma 8.20 does not hold. Numerical calculation shows no equilibria
in the mixed areaM, and thus Cc = ∅ in (8.11).

in Section 8.7. Moreover, the number of saddle points is exactly one more than
the total number of nodes, foci and centers in the mixed area as shown in the
proof. This is a topological limitation of the composite vector field regardless of
the specific form of the reactive boundary, the repulsive boundary and the zero-in
and zero-out functions (i.e., the choice of S(ξ) and Z(ξ)). The best we can hope
for is that there is only one saddle point in the mixed area, and thus trajectories
starting from almost all initial conditions will not be attracted to the saddle point.
However, note that if CP ∩ inR 6= ∅, then it is possible that there are no equilibria
in the mixed areaM (see Fig. 8.4), and thus this limitation can be removed. This
is perhaps surprising since a similar limitation always exists in traditional motion
planning algorithms based on potential functions or navigation functions [68],
[120] /

In the path-following problem (without obstacles), it is desirable that there
are no singular points (i.e., CP = ∅) such that global convergence to the desired
path is guaranteed by Lemma 8.8. In contrast, as implied by Lemma 8.20, the
emptiness of the singular set CP is not desirable when there are obstacles, since
the condition CP ∩ inR = ∅ of Lemma 8.20 holds automatically, implying the
existence of a saddle point inM.

We will prove that almost all initial points give rise to trajectories leaving the
closed mixed areaM after some time. The following definition explains what is
meant by trajectories leaving a set.

Definition 8.22. A trajectory ξ : R → R2 leaves a nonempty set A ⊆ R2 if there
exists t1 > t0 such that ξ(t0) ∈ A and ξ(t1) /∈ A.
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The definition implies that whether a trajectory will enter the set A again (and
remain or not remain there) is irrelevant. We present the following lemma.

Lemma 8.23 (LeavingM). Suppose CP ∩ inR = ∅ and there is only one equilibrium
point (i.e., a saddle point) c0 ∈ Cc in the mixed area M. Furthermore, suppose there
exists a trajectory ξ(t) starting from the repulsive boundary Q and reaching the reactive
boundary R, then trajectories starting from almost all initial points in the closed mixed
areaM will leaveM.

Proof. From Lemma 8.20, the only equilibrium in the mixed areaM is a saddle
point. Thus the initial conditions of trajectories that converge to the saddle point
form a set of measure zero. Since the index of the saddle point is −1, there are no
closed orbits around it. Closed orbits could only be possible when they surround
the repulsive area inQ. However, since there is a trajectory moving from the
repulsive boundary Q to the reactive boundary R, such closed orbits cannot exist,
as there would be violation of the uniqueness of solutions (see Theorem 2.1).
Therefore, trajectories starting from almost all initial points in the closed mixed
areaM will leaveM by the Poicaré-Bendixson theorem (see Theorem 2.15).

We are now ready to present the main theorem.

Theorem 8.24. The VF-CAPF problem with the vector field in (8.8) is solved if the
following conditions hold simultaneously:

C.1 W(CR) ∩Q = ∅, CP is bounded, and the initial condition ξ(0) /∈ W(CP );

C.2 CP ∩ inR = ∅ and there is only one equilibrium c0 ∈ Cc in the mixed areaM;

C.3 There exists a trajectory ξ(t) starting from the repulsive boundary Q and reaching
the reactive boundary R.

Proof. If there are no obstacles and given that ξ(0) /∈ W(CP ), then due to Lemma
8.8, the first control objective of the VF-CAPF problem is achieved. Given that
W(CR) ∩Q = ∅, Lemma 8.16 and Corollary 8.17 imply that the second control
objective of the VF-CAPF problem in Definition 8.5 is fulfilled. Since CP is bounded,
Lemma 8.18 shows that the magnitude of the path-following error is bounded,
and the third control objective is met. Next, under conditions C.2 and C.3, Lemma
8.23 shows that almost all initial points in the closed mixed area M give rise
to trajectories leaving M. Due to the uniqueness of solutions, the vector field
degenerates to the normalized path-following vector field χc = χ̂P once the
trajectory leaves the reactive area. Then the trajectory will follow the desired
path until it possibly returns to the reactive area again. Since S(ξ) and Z(ξ) are
bounded, the norm of the composite vector field ‖χc‖ is finite. Therefore, the
time difference between two consecutive time instants ∆tr > 0 of entry from the
non-reactive area into the reactive area cannot be infinitely small. Thus the fourth
control objective is accomplished.
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Remark 8.25. The technical results in this section still hold if one replaces the
normalized vector fields χ̂P and χ̂Ri with the original ones χP and χRi in (8.8);
i.e., (8.8) is changed to χc(ξ) =

(
∏i∈I tQi (ξ)

)
χP (ξ) + ∑i∈I

(uRi (ξ)
χRi (ξ)

)
.

This is because the core technical proofs rely on the Lyapunov analysis of the
vector fields χP or χRi separately. The proofs of the results for the new composite
vector field with the original vector fields χP and χRi are almost the same except
for minor changes; e.g., (8.13) and (8.14) need to be multiplied by ‖χR‖ without
affecting the subsequent technical development. /

The local insets W(CR) and W(CP ) in Condition C.1 can be numerically
calculated11. Fortunately, the calculation can be avoided for some typical desired
paths or boundaries, such as circles or ellipses, since the local insets are the same
as the singular sets. More generally, sufficient conditions to avoid the calculation
ofW(·) are given in Corollary 8.26, which results from combining Lemma 8.10

and Theorem 8.24.

Corollary 8.26. Suppose the singular sets CP and CR are discrete, φ(p)Hφ(p) and
ϕ(q)Hϕ(q) have all negative eigenvalues for every point p ∈ CP , q ∈ CR. The VF-CAPF

problem with the vector field in (8.8) is solved if the conditions in Theorem 8.24 hold,
whereW(CR) = CR andW(CP ) = CP .

Remark 8.27. Conditions C.2 and C.3 in Theorem 8.24 might probably hold in
practice, even though they are difficult to verify in theory. Condition C.2 might
be satisfied by changing some design choices: a) the function φ characterizing the
desired path P ; b) the function ϕ and the constant c characterizing the repulsive
boundary Q and reactive boundary R, and c) the functions S(·) and Z(·) in
the smooth zero-in and zero-out functions. Condition C.3 is not conservative
because the existence of only one such trajectory is sufficient, but it is challenging
to verify analytically. This condition is employed here to eliminate the possibilities
of limit cycles in the mixed area, ensuring that trajectories can eventually leave
the mixed area. Note that the proof of existence and non-existence of limit cycles
in general is a challenging problem in nonlinear systems theory. There are only
a few available tools, such as the Poincaré-Bendixson theorem, the Bendixson
criterion and index theory [66, Lemma 2.1-2.3], [149, Chapter 9]. These tools
might be used to verify condition C.3. /

The main disadvantages of the composite vector field approach discussed
above are: a) Conditions C.2 and C.3 are difficult to check; b) In many cases, the
limitation revealed in Lemma 8.20 exists. However, Conditions C.2 and C.3 are
crucial to avoid the well-known phenomenon called deadlock, but few algorithms
in the literature provide a theoretical guarantee to avoid it [171]. Nevertheless,
we will use a switching vector field in Section 8.5 to replace these two conditions
with easily-verifiable ones and also remove the limitation in Lemma 8.20.

11 For instance, if the singular points are hyperbolic, then the local insets are manifolds [124, Theorem
7.6] that can be numerically computed via the graph transform method or the Lyapunov-Perron
method [149, Chapter 3.5], [97], [109]
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8.5 switching vector field
To replace the two conditions mentioned earlier and deal with undesirable
equilibria in the mixed area, we introduce a switching vector field and prove that
this switching vector field can solve the VF-CAPF problem.

Singular points in the mixed areaM appear where the components S(ξ)χ̂P (ξ)
and Z(ξ)χ̂R(ξ) in (8.7) cancel each other. Specifically, this happens only if
S(ξ) = Z(ξ). Namely, the extra singular points (should they exist) belong to the
following set

E = {ξ ∈ R2 : S(ξ) = Z(ξ)}. (8.15)

This set E is nonempty since the functions S(·), Z(·) are continuous, and S(·)
decreases to 0 “radially inwardly” towards the repulsive boundary Q, whereas
Z(·) decreases to 0 “radially outwardly” towards the reactive boundary R. In
addition, E is compact and E (M; i.e., this set does not intersect the reactive
boundary R or the repulsive boundary Q. The functions S(·) and Z(·) are
flexible design choices and characterize the set E . For simplicity of analysis, the
functions S(·) and Z(·) are designed such that the set E only contains “rings”.
More precisely, the set E constitutes a finite number of one-dimensional compact
connected submanifolds in R2. In Section 8.7, we illustrate how to design these
functions.

The closed ε-neighborhood E ε of the set E is E ε = {ξ ∈ M : dist(ξ, E) ≤ ε},
where ε > 0. Due to the compactness of E and R, and E ∩ R = ∅, one can
always choose an ε > 0 sufficiently small such that12 dist(E ε,R) > 0. The basic
idea is that if a trajectory enters E ε, then it will possibly be attracted to a stable
equilibrium inM. Nevertheless, we can then switch to another vector field such
that this possibility is excluded. This new vector field is designed as a “perturbed”
version of the reactive vector field in the sense that it is induced by a slightly
enlarged reactive boundary, as introduced in the sequel. The existence of an
enlarged reactive boundary is guaranteed by the following lemma.

Lemma 8.28. Given ϕ and R in (8.2), there exists a constant δ 6= 0 such that Rδ :=
ϕ−1(δ) = {ξ ∈ R2 : ϕ(ξ) = δ} is a one-dimensional compact connected submanifold
in R2, also satisfying dist(R,Rδ) > 0 and inR ⊆ inRδ, where inRδ is the perturbed
reactive area defined analogously to inR.

Proof. From Section 8.2, one knows that 0 is a regular value of ϕ, and R =
ϕ−1(0) is a one-dimensional compact connected submanifold in R2 (i.e., ϕ−1(0)
is homeomorphic to S1). By the Ehresmann theorem [30, p. 378], which can
be regarded as a generalization of the Morse theorem [106, Theorem 2.6], there
exists an open interval I of 0 such that ϕ−1(I) is homeomorphic to I × ϕ−1(0),
given by a homeomorphism denoted by Γ, such that πI ◦ Γ = ϕ|ϕ−1(I), where

12 Since dist(E ,R) := δ > 0, one can, for instance, choose ε = δ/2 such that dist(E ε,R) > 0, according
to [136, Chapter 1, Lemma 3.1].
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P
J o,fflo

int

R
Rδ

Q E ε

Figure 8.5: Notations for the switching vector field (8.17). The pink irregular shape is
the obstacle. The dot-dashed black line is the repulsive boundary Q. The
solid black line is E and the shaded area around E is ε-neighborhood E ε. Two
white points on the solid line E are saddle points, and the black point is a
stable equilibrium of (8.10). The solid green line and dashed green line are the
reactive boundary R and the perturbed reactive boundary Rδ, respectively.
The red horizontal solid line is the desired path P . The red point is an
intersection point between Rδ and P , where a blue arrow represents the
outward-pointing normal of Rδ. The gray disk symbolizes the set J o,fflo

int in
(8.16). Three arrows compose a trajectory starting from beyond the reactive
area, where the black and gray arrows correspond to σ = 1 and σ = 2
respectively.

πI is the projection onto the first factor. Therefore, for any q ∈ I , the level curve
ϕ−1(q) is homeomorphic to R = ϕ−1(0); namely, ϕ−1(q) is a one-dimensional
compact connected submanifold in R2 for any q ∈ I , and thus dist(R,Rq) > 0
for any q ∈ I , where Rq := ϕ−1(q). Moreover, choose an α ∈ I such that α 6= 0
and −α ∈ I . Let δ = α. If inR ⊆ inRδ is satisfied, then the proof is complete;
otherwise, we choose δ = −α.

Remark 8.29. This lemma means that the shape of the level set ϕ−1(δ) is similar
to the zero-level set ϕ−1(0) = R. More precisely, ϕ−1(δ) is homeomorphic to
the reactive boundary R. For example, suppose the reactive boundary enclosing
an obstacle is an ellipse, characterized by ϕ = x2/a2 + y2/b2 − 1 = 0, where
a, b 6= 0 are constants. All the level sets ϕ−1(k) for k > −1 are ellipses of different
sizes. /

Note that the only difference in the definition of Rδ from that in (8.2) is the
constant δ. Therefore, we can similarly derive a perturbed reactive vector field χRδ

by replacing the level function ϕ with ϕδ := ϕ− δ in (8.5). This notation also
implies that ϕ0 = ϕ. Accordingly, we define the singular set CRδ

corresponding
to this perturbed reactive vector field χRδ

as CRδ
:= {ξ ∈ R2 : χRδ

(ξ) = 0} =
{ξ ∈ R2 : ∇ϕδ(ξ) = 0}. Since ϕδ = ϕ− δ =⇒ ∇ϕδ = ∇ϕ, it turns out that
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the singular set for the perturbed reactive vector field is the same as that for the
reactive vector field; i.e.,

CRδ
= CR.

We define Jint := Rδ ∩ P 6= ∅, which is the set of all intersection points
between the perturbed reactive boundary Rδ and the desired path P . For
simplicity, we assume that this set Jint is finite, as otherwise, one can choose
a different perturbed reactive boundary Rδ such that this assumption holds.
The outward-pointing normal [141] of the perturbed reactive boundary Rδ at a
point q ∈ Rδ, denoted by No(q) ∈ S1 ⊆ R2, is an outward-pointing unit vector
perpendicular to Rδ at q ∈ Rδ. Now we can define the set of points where
the path-following vector field χP points towards a similar direction to the
outward-pointing normal of Rδ at the intersection points: J o

int := {ξ ∈ Jint :
χ̂P (ξ)>No(ξ) > 0}, which is a finite set. Starting from any point of this set,
the integral curves of the path-following vector field will be “driven out” of the
perturbed reactive area inRδ. Due to the continuity of χ̂P and the finiteness
of J o

int, one can choose an εo > 0 sufficiently small such that for every two
distinct intersection points qi, qj ∈ J o

int, their closed εo-neighborhoods are disjoint
(i.e., qεo

i ∩ qεo
j = ∅, where qεo

i := {ξ ∈ R2 : dist(ξ, qi) ≤ εo} and qεo
j is defined

similarly), and in each of these εo-neighborhood, χ̂P points towards a similar
direction to the outward-pointing normal at the corresponding intersection point;
namely, ∀q ∈ J o

int and ∀ξ ∈ qεo , there holds χ̂P (ξ)>No(q) > 0. We define the
union of these εo-neighborhoods to be

J o,fflo
int :=

⋃
q∈J o

int

qεo . (8.16)

See Fig. 8.5 for the introduced new concepts.
Now we consider the following switching system

ξ̇(t) = χ
σ(t)(ξ(t)), (8.17)

where σ : [0, ∞)→ {1, 2} is the switching signal13, of which the discrete transitions
depend on its previous discrete state limτ→t− σ(τ) and the continuous state ξ(t)
at time t, as shown in Fig. 8.6. More precisely, σ(t) = 1 if limτ→t− σ(τ) = 2
and ξ(t) ∈ exR∩J o,fflo

int , and the right-hand side of (8.17) becomes the composite
vector field χ1 = χc; σ(t) = 2 if limτ→t− σ(τ) = 1 and ξ(t) ∈ E ε, and the
right-hand side of (8.17) becomes the perturbed reactive vector field χ2 = χRδ

;
otherwise, the switching signal retains the previous value: σ(t) = limτ→t− σ(τ).
Solutions to (8.17) are interpreted in the sense of Carathéodory [82, p. 10]; that is, a

13 A switching signal is a piecewise constant function which attains a constant value between any two
consecutive switching times (i.e., the discontinuities), and the number of switching times is finite on
every bounded time interval [82, p. 6].



154 guiding vector fields for following occluded paths

σ = 1
(χ1 = χc)

σ = 2
(χ2 = χRδ

)

ξ ∈ E ε

ξ ∈ exR∩J o,fflo
int

Figure 8.6: The discrete transitions of the switching signal σ in (8.17).

solution to (8.17) is an absolutely continuous function ξ : [0, ∞)→ Rn satisfying
ξ(t) = ξ(t0) +

∫ t
t0

χ(τ, ξ(τ))dτ, where χ(τ, ξ(τ)) in the integral is adapted from
the right-hand side of (8.17) to show its explicit dependence on time t due to the
switching signal σ(t). The solution is piecewise differentiable and satisfies the
differential equation (8.17) almost everywhere.

Recall that Conditions C.2 and C.3 in Theorem 8.24 are used to prevent trajecto-
ries from converging to an attractive equilibrium in Cc ⊆M and from converging
to a closed orbit inM respectively. Namely, the common objective is to prevent
trajectories from getting stuck in the mixed areaM. Using the switching vector
field χ

σ(t), we can replace these two conditions with more verifiable ones in the
following theorem.

Theorem 8.30. Suppose the functions S(·) and Z(·) in (8.7) are chosen such that the
set E in (8.15) is a one-dimensional connected manifold14. Consider the switching system
(8.17), the VF-CAPF problem is solved if the following conditions hold simultaneously:

C.1 Condition C.1 in Theorem 8.24; i.e.,W(CR) ∩Q = ∅, CP is bounded, and the
initial condition ξ(0) /∈ W(CP );

C.2 W(CRδ
) ∩ E ε = ∅;

C.3 The initial conditions ξ(0) /∈ inR and σ(0) = 1.

In particular, the Zeno behavior does not occur.

Proof. Step 1: We first show that trajectories of (8.17) will not converge to any
equilibrium points in E . Precisely, trajectories of (8.17) will not converge to the set
S := Cc ∩ E = Cc ∩ E ε, where Cc defined in (8.11) is the set of singular points of
the composite vector field χc, which happens to be the set of equilibrium points of
(8.17) when σ = 1. Note that the perturbed reactive vector field χRδ

is activated
only if ξ(t) ∈ E ε, but given condition C.2 and the dichotomy convergence
property (Lemma 8.8), trajectories of ξ̇ = χ2(ξ) = χRδ

(ξ) will not converge to
S . Therefore, it suffices to consider only the case σ = 1. Suppose there exists

14 Roughly speaking, E is (the trace) of a simple closed curve.



8.5 switching vector field 155

a trajectory ξ(t) of (8.17), where χ
σ=1 = χc, converging to S ; then there exists

a time instant T1 ≥ 0 such that ξ(T1) ∈ E ε. In this case, the system switches to
ξ̇ = χRδ

(ξ). However, as mentioned before, the trajectory will then converge
to the perturbed reactive boundary Rδ if no switching happened afterward. In
particular, there exists T2 > T1 such that ξ(T2) ∈ R. Since dist(E ,R) > 0, this
implies that the trajectory cannot converge to S .

Step 2: Now we show that there are no closed orbits in the reactive area inR
(given condition C.3). Using similar arguments as before, it suffices to investigate
only the case when σ = 1 and the switching system (8.17) becomes ξ̇ = χc(ξ).
As shown in the proof of Lemma 8.20, the index of the reactive boundary R
is 0. Since there are are no equilibrium points between the reactive boundary
R and E (precisely, inR ∩ exE , where exE is defined analogously to exR), any
closed orbit starting between the reactive boundary R and E must intersect E ε to
enclose equilibria such that its index becomes 1 [66, Lemma 2.3]. Therefore, any
trajectory corresponding to a closed orbit must intersect E ε, but then the vector
field switches to χRδ

. Therefore, there cannot be closed orbits in the reactive area
inR.

Step 3: Now we show that trajectories will eventually leave the closed reactive
area inR. Step 1 has proved that any trajectories cannot converge to the set E ,
since any such trajectories would be driven to move to the reactive boundary
R by the perturbed reactive vector field χσ=2 = χRδ

. If the switching signal
does not change to σ = 1, then the trajectory will converge to the perturbed
reactive boundary Rδ according to condition C.2 and the dichotomy convergence
property in Lemma 8.8. Since the switching signal only switches to σ = 1 if
ξ(t) ∈ exR∩J o,fflo

int , this implies that the trajectory will eventually leave the closed

reactive area inR. Moreover, once the condition ξ(T) ∈ exR∩J o,fflo
int is satisfied

at some time T, the vector field becomes χ
σ=1 = χc = χ̂P . Due to the property of

the set J o,fflo
int in (8.16), the trajectory will eventually leave the perturbed reactive

boundary Rδ.
Step 4: Finally, we show that the Zeno behavior cannot occur. Let d :=

dist(E ε,R) > 0, and vm := maxξ∈M{χσ=1, χσ=2} < ∞. Therefore, the duration
∆t between any two switching time instants is lower bounded by d/vm > 0, thus
excluding the Zeno behavior.

Remark 8.31. One can observe that in this switching approach, the composite vec-
tor field χc degenerates to the normalized path-following vector field χ̂P , and the
switching happens between χ̂P and χRδ

. Thus the design of the composite vector
field seems redundant. However, the switching mechanism is only introduced to
solve the deadlock problem. Once there is no such problem, then a composite
vector field is more efficient as it can avoid the non-smooth and possible tortuous
motion caused by the switching of different vector fields. /
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Similarly to Corollary 8.26, the following corollary facilitates the verification of
the conditions in Theorem 8.30. Note that since ϕδ = ϕ− δ, the Hessian matrices
satisfy Hϕ(·) = Hϕδ(·).

Corollary 8.32. Consider the switching system (8.17) and suppose the singular sets
CP and CR = CRδ

are discrete. If φ(p)Hφ(p), ϕ(q)Hϕ(q) and ϕδ(q)Hϕ(q) have all
negative eigenvalues15 for every point p ∈ CP and q ∈ CR, where ϕδ := ϕ− δ, then
the VF-CAPF problem is solved if conditions in Theorem 8.30 hold, where W(CR) =
W(CRδ

) = CR andW(CP ) = CP .

8.6 discussions

8.6.1 Moving obstacles

In this section, we will re-design the reactive vector field χ′R : R ×R2 → R2 to
include the “motion information” of obstacles, and thus obtain a new composite
time-varying vector field χ′c : R ×R2 → R2. Note that since the desired path
is still static, the path-following vector field χP : R2 → R2 remains unchanged.
Also note that since the new reactive vector field χ′R is time-varying (i.e., explicitly
time-dependent), the normalization factor 1/‖χ′R‖ of χ′R is also time-varying,
and thereby the phase portrait of χ̂′R is possibly different from that of the original
vector field χ′R (c.f., Remark 8.9). For this reason, we do not use normalized
vector fields in (8.8), but retreat to

χ′c(t, ξ) =

(
∏
i∈I
tQi (ξ)

)
χP (ξ) + ∑

i∈I

(
uRi (t, ξ)χ′Ri

(t, ξ)
)

, (8.18)

where we note that χP and χ′Ri
are not normalized. As mentioned in Section 8.2,

we require that the motion of obstacles is sufficiently smooth in the sense that the
function ϕi(t, ξ), which is related to the reactive boundary of the i-th obstacle, is
twice continuously differentiable in t. Again by Assumption 8.4, it is sufficient
to consider only one moving obstacle.

To ensure the previous results still hold for the new reactive vector field (hence
the new composite vector field), we use a Lyapunov analysis to derive the new
vector field χ′R. Specifically, we add an additional time-varying term to the
original reactive vector field (8.5) as follows:

χ′R(t, ξ) = E∇ϕ(t, ξ)− kr ϕ(t, ξ)∇ϕ(t, ξ) + v(t, ξ), (8.19)

15 If |δ| is sufficiently small (i.e., |δ| ≈ 0), then the signs of eigenvalues of ϕ(q)Hϕ(q) and ϕδ(q)Hϕ(q)
for every point q ∈ CR are the same. Therefore, one does not need to check the condition related to
ϕδ(q)Hϕ(q).
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where ∇ϕ(t, ξ) := ∂ϕ(t,ξ)
∂ξ ∈ R2 and v : R+ ×R2 → R2 is an additional term to

be determined. We choose the Lyapunov function candidate V(t, ξ) = 1
2 kϕ2(t, ξ),

where k is a positive constant. Now we have

d
dt

V(t, ξ) =
dV
dϕ
∇ϕ(t, ξ)> ξ̇ +

dV
dϕ

∂ϕ

∂t
(8.19)
= kϕ∇ϕ>χ′R + kϕ

∂ϕ

∂t

= −kkr ϕ2‖∇ϕ‖2 + kϕ

(
∇ϕ>v +

∂ϕ

∂t

)
,

(8.20)

where the second equation uses the equality ξ̇ = χ′R as we only consider the new
reactive vector field χ′R now and conduct the Lyapunov analysis. Now let v be
chosen as

v =
1

‖∇ϕ‖2

(
−∂ϕ

∂t
− lϕ

)
∇ϕ, (8.21)

where l is a positive constant. Substituting (8.21) into (8.20), we have d
dt V(t, ξ) =

−kkr ϕ2‖∇ϕ‖2 − klϕ2 ≤ −2lV. Therefore, by Theorem 4.9 in [66], the integral
curves of the new reactive vector field in (8.19) will (globally) uniformly expo-
nentially converge to the time-varying reactive boundary R characterized by
ϕ(t, ξ) = 0.

We have shown above that the new reactive vector field χ′R can still guide
trajectories to converge to the reactive boundary R, which is time-varying now
due to the motion of the obstacle. Therefore, by combining (8.18), (8.19) and
(8.21), we obtain a new composite vector field χ′c, which is time-varying. The
previous results still hold for this new composite vector field χ′c, for which the
proofs are almost the same (see Remark 8.25).

Remark 8.33. Note that to ensure the additional term v in (8.21) is well defined,
it is required that ‖∇ϕ‖ 6= 0. Fortunately, it is shown in Theorem 4.9 that this
requirement is always satisfied locally for bounded paths. In other words, there
exists a positive constant α such that the gradient ∇ϕ is non-zero in the reactive
boundary’s neighborhood Eα := {ξ ∈ R2 : |ϕ(ξ)| ≤ α}. For unbounded paths, it
is required that ‖E∇ϕ‖, or equivalently ‖∇ϕ‖, is bounded away from zero on
R, and there exists a positive constant β such that ‖∇ϕ‖ is upper-bounded in
Eβ := {ξ ∈ R2 : |ϕ(ξ)| ≤ β} (see Theorem 4.15). /

Remark 8.34 (Robustness). In practice, one might expect that the time derivative
information ∂ϕ

∂t in (8.21) is contaminated by measurement error. Fortunately, the
exponential convergence property mentioned above provides some robustness
against this error. It turns out that we can still reduce the value of the Lyapunov
function V to an arbitrarily small positive value by increasing the gain l in
(8.21). This is justified as follows. Let the gain l > 1/2 + ε, where ε > 0 is a
constant. Suppose some time-varying measurement error ρ(t, ξ) ∈ R is added
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to the information of the time derivative ∂ϕ
∂t . Therefore, (8.21) is perturbed as

v = 1
‖∇ϕ‖2

(
− ∂ϕ

∂t + ρ− lϕ
)
∇ϕ, and (8.20) is changed to

d
dt

V(t, ξ) = −kkr ϕ2‖∇ϕ‖2 − klϕ2 + kρϕ (8.22)

≤ −
(

l − 1
2

)
kϕ2 +

1
2

kρ2 (8.23)

≤ −εkϕ2, ∀|ϕ| ≥ α(|ρ|) > 0, (8.24)

where (8.23) has used the fact that ρϕ ≤ ρ2/2 + ϕ2/2, and α(|ρ|) = 1√
2l−2ε−1

|ρ|
is a class κ function. Therefore, by Theorem 4.9 in [66], the system ξ̇(t) =
χ′R(t, ξ), where χ′R(t, ξ) is in (8.19), is input-to-state stable (ISS) with respect
to the measurement error ρ. If the measurement error is uniformly bounded
|ρ(·)| < ρb, where ρ0 > 0 is a constant, this implies that by choosing l > 1/2 + ε,
the value of the Lyapunov function V will eventually decrease to within V =

kϕ2/2 ≤ kρ2
b

2(2l−2ε−1) . By choosing a large ε, the decreasing rate of V is greater as
observed from (8.24). Furthermore, one may assume that the measurement error
is vanishing in the sense that |ρ| ≤ β|ϕ|, where β > 0 is a constant. In this case, by
choosing l > β, the Lyapunov function value V will decrease (globally) uniformly
exponentially to 0. This is justified using the same argument as before. Namely,
from (8.22), we have d

dt V(t, ξ) = −kkr ϕ2‖∇ϕ‖2 − klϕ2 + kρϕ ≤ −(l − β)kϕ2 =
−2(l− β)V, and then we can employ Theorem 4.9 in [66] to obtain the robustness
result. /

8.6.2 Higher-dimensional spaces

One of the advantages of using the composite vector field is its natural extension
to any higher-dimensional spaces, since the path-following and reactive vector
fields on higher-dimensional spaces have been studied in the literature (see
Chapters 4 and 9 and [50]). We take the 3D case as an example. In R3, a
desired path P is usually described by the intersection of two surfaces defined
by the zero-level sets of φ1 and φ2 respectively, where φ1, φ2 : R3 → R are
twice continuously differentiable. Namely, the description in (8.1) is extended
to P = {ξ ∈ R3 : φ1(ξ) = 0, φ2(ξ) = 0}, and the path-following vector field
becomes

χP (ξ) = ∇φ1(ξ)×∇φ2(ξ)−
2

∑
i=1

kiφi(ξ)∇φi(ξ), (8.25)

where ki are positive constants. As for obstacles in 3D, the corresponding repul-
sive and reactive boundaries are naturally extended to be repulsive surfaces and
reactive surfaces to avoid collision from all directions in 3D. Similarly, these two
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surfaces can be defined respectively as the c-level surface and zero-level surface
of a C2 function ϕ : R3 → R. Similar to (8.25), the reactive vector field χR can be
defined as

χR(ξ) = ∇ϕ(ξ)× v− kr ϕ(ξ)∇ϕ(ξ), (8.26)

where v ∈ R3 is a constant vector indicating how to bypass the obstacle on the
reactive surface ϕ−1(0). The 3D composite vector field is attained by substituting
χP and χR in (8.8) by their 3D counterparts in (8.25) and (8.26) respectively. The
extension to higher-dimensional spaces Rn, where n > 3, is straightforward by
using higher-dimensional vector fields in [50] or in Chapter 9. However, although
the physical intuition is clear, the rigorous analysis in higher-dimensional spaces
using dynamical systems theory is challenging; especially, the Poincaré-Bendixson
theorem is no longer applicable for analysis. Exploring the provision of rigorous
underpinnings will be left for future work, while a numerical simulation example
in R3 is shown in Section 8.7.

8.6.3 Complicated robot models

To solve the VF-CAPF problem is to design a vector field χ : R2 → R2 such that its
integral curves (that is, trajectories of the ODE ξ̇(t) = χ(ξ), where ξ ∈ R2) fulfill
the control objectives. In robotics, the ODE implies that the robot model is the
single-integrator model:

ξ̇(t) = u(t), (8.27)

where ξ(t) = (x(t), y(t)) represents the position of the robot at time t, and u is
the control input, which is designed to be the vector field (i.e., u(t) = χ(ξ(t))),
taking the robot position ξ(t) as the feedback signal. Therefore, the vector
field indicates the desired velocity (or orientation) χ(ξ) at position ξ ∈ R2. In
general, the vector field provides a high-level guidance layer for the robot motion.
The low-level control is usually implemented by other control techniques, of
which the performance is usually assumed sufficiently well achieved such that
one can abstract away the low-level control layer [63], [111], [165]. Moreover,
it has been shown in [91] that it is usually sufficient to consider the single-
integrator model (8.27), and then employ the paper’s methodology to deal with
constraints imposed by vehicle shapes, kinematics, etc. The methodology is
based on transformations that generate a zone around a robot to account for these
constraints. Regarding the approach presented in this chapter, one can enlarge the
repulsive or reactive boundaries to consider different robot models. Nevertheless,
for more complicated robot models, control laws based on vector fields have been
derived for differential-drive robots, fixed-wing aircraft, quadrotors, etc. (see [50],
[63], [118], Chapters 4, 5, 10). We provide two examples of dealing with 2D and
3D Dubins car models in Section 8.7.
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8.7 simulations

8.7.1 Smooth zero-in and zero-out functions

Given the function ϕ and a constant c as in (8.3), we define two smooth functions:

f1(ξ) =


0 ξ ∈ {ϕ(ξ) ≤ c}

exp
(

l1
c− ϕ(ξ)

)
ξ ∈ {ϕ(ξ) > c},

(8.28)

f2(ξ) =

exp
(

l2
ϕ(ξ)

)
ξ ∈ {ϕ(ξ) < 0}

0 ξ ∈ {ϕ(ξ) ≥ 0},
(8.29)

where l1 > 0, l2 > 0 are used to change the decaying or increasing rate. Through-
out this section, the zero-in and zero-out bump functions are designed as

tQ(ξ) = f1(ξ)

f1(ξ) + f2(ξ)
, uR(ξ) = f2(ξ)

f1(ξ) + f2(ξ)
. (8.30)

One can verify that the denominators of the above bump functions are always
positive, and the functions satisfy the conditions in Corollary 8.13. In addition,
thanks to this design, the set E in (8.15) is simply the l2c/(l1 + l2)-level set of ϕ;
i.e.,

E = ϕ−1
(

l2
l1 + l2

c
)

.

8.7.2 2D composite vector field

In this simulation example, the desired path is a circle described by the function
canonically chosen as φ(x, y) = x2 + y2 − R2 = 0, where R > 0 is the radius.
According to Lemma 8.10, one can conclude that CP = W(CP ) = {0}. Six
obstacles are placed either directly on the desired path, or very close to it (see
Fig. 8.7). Depending on the shapes of the obstacles, some reactive boundaries
are described by rotated ellipses: ϕ(x, y) = ((x− ox) cos β + (y− oy) sin β)2/a2 +
((x − ox) sin β − (y − oy) cos β)2/b2 − 1 = 0, where a, b > 0 and β is the rota-
tion angle about the center of the ellipse (ox, oy). The singular sets and the
corresponding insets are simply CR = W(CR) = {(ox, oy)}. Two obstacles are
enclosed by one reactive boundary which is modeled by a Cassini oval described
by ϕ(x, y) = [(x− 0.9)2 + (y− 2)2][(x + 0.9)2 + (y− 2)2]− 0.9 = 0, and we have
CR =W(CR) = {(±0.9, 2)} for this reactive boundary. Since the functions φ and
ϕ chosen for circles, ellipses and Cassini ovals are common in practice, we call
them canonical functions for simplicity.
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Figure 8.7: Simulation I. The red curve (partly covered by the pink curve) is the desired
path. The red transparent shapes are obstacles, the solid closed curves enclos-
ing them are the reactive boundaries and the dashed lines are the repulsive
boundaries. The pink curves are trajectories starting from eight different
positions. One of the initial point is in the repulsive area.

As shown in Fig. 8.7, starting from eight different positions, (1,−1), (2, 2),
(−1, 1), (−3, 1.5), (−3,−2), (0.35,−2), (0.5, 0.5) and (−0.4,−0.8), all trajectories
successfully follow the desired path and bypass the obstacles without entering
the repulsive areas (except when starting from the repulsive area). Note that
the trajectories smoothly pass the narrow passage surrounded by two vertical
ellipses, while the vanilla artificial potential field method can hardly achieve this
[69]. Also, note that this method is effective even though the Cassini oval is not
convex. By numerical calculations, we find that there is only one saddle point in
E in each reactive area. Therefore, as verified by the simulation, no trajectories
are attracted to stable points in E , so the switching vector field is not employed.

8.7.3 Switching vector field to overcome the deadlock

In this simulation, we use one obstacle for simplicity. The corresponding reactive
boundary is described by ϕ = 2x4 + 2(y + 1)4 − 3x2(y + 1)2 − 2 = 0, which is
represented as the solid green curve in Fig. 8.8. This rather unusual boundary is
used to illustrate the generality of our approach to obstacles of various shapes.
The desired path is an ellipse described by φ = x2/9 + y2 − 1 = 0. The constant c
is −1.5 for the repulsive boundary in (8.3), and the gains for the vector fields are
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Figure 8.8: Simulation II. The red transparent area represents an obstacle. Two red crosses
represent two saddle points and the red small circle represent the stable
equilibrium in E . The magenta curve is a trajectory of (8.8) starting from
(2, 0). It is attracted to the stable equilibrium and get stuck in the reactive area.
This deadlock behavior does not occur when the trajectory (yellow curve) is
generated by the switching vector field.

kp = 1 and kr = 0.4 in (8.4) and (8.5) respectively. One can numerically calculate
three equilibria in E : two saddle points and one stable equilibrium. Therefore, a
trajectory of the composite vector field will be attracted to the stable equilibria
and thus get stuck in the mixed area. However, the switching vector field in (8.17)
can resolve this issue. The set E ε is approximated using the level set value; that
is, E ε ≈ {ξ ∈ R2 : |ϕ(ξ)− l2c/(l1 + l2)| ≤ ε}, where we choose l1 = l2 = ε = 0.1.
See Fig. 8.8 for the simulation results. Instead of using switching vector fields,
another possible solution is to eliminate stable equilibria using the approach
introduced in Chapter 9, given that the parametrization of a deformed desired
path to bypass obstacles is known.

8.7.4 Moving obstacles and 2D Dubins car model

In this simulation, an obstacle is moving at a constant speed, and thereby the
reactive boundary is a moving ellipse. The function ϕ(t, x, y) is ϕ = (x + 5−
vobst)2/a2 + y2/b2 − 1, where a = 2, b = 1, and vobs = 0.5 is the constant speed
of the obstacle along the positive x-axis. The desired path is a sinusoidal curve
described by φ(x, y) = y− sin(x) = 0. Using the composite vector field, where
the reactive vector field is given by (8.19), trajectories can bypass the moving
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Figure 8.9: Simulation III with a moving obstacle at t = 0s, 4.47s, 5.67s, 6.57s, 7.82s and
10.32s respectively from left to right, top to bottom. The red curve is the
desired path, and the red elliptic shape is the moving obstacle. The repulsive
boundary and the reactive boundary are represented by the dashed black line
and the solid green line, respectively. The black curve is the trajectory of the
single-integrator model starting from (0.8,−0.6), whereas the magenta curve
is the trajectory of the 2D Dubins car model with speed s = 1 and initial
conditions (x0, y0, θ0) = (0.8,−0.6, 0). The triangles represent the poses of
the robot at different time instants. The results show that the two trajectories
bypass the obstacle and then follow the desired path.

obstacle and follow the desired path afterward. To illustrate at the same time
the applicability of the composite vector field for robot models other than the
single-integrator model, we consider the following 2D Dubins car model:

ẋ = s cos θ ẏ = s sin θ θ̇ = uθ , (8.31)

where (x, y) is the robot’s position in R2, θ ∈ [0, 2π) is the robot’s orientation,
uθ is the control input and s is the constant speed. We follow Theorem 4.24 to
design the control input uθ . See Fig. 8.9 for the simulation results.

8.7.5 3D composite vector field and 3D Dubins car model

In this simulation, a 3D static obstacle modeled by a solid ball occupies a planar
desired path shown in Fig. 8.10. Since the desired path is a planar curve, we
simply choose φ1(x, y, z) = z, and φ2(x, y, z) is obtained by using radial-basis
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functions to interpolate several sample points [50]. Specifically, we assume that
φ2(q) = −1 + ∑N

k=1 ωk f (‖q − q(k)‖), where q = (x, y, z) ∈ R3 is the function
input, q(k) ∈ R3 are N sample points on the desired path, where N > 1, ωk
are N unknown parameters to be calculated and f : R≥0 → R is a radial-basis
function. The parameters ωk are determined by N constraints: φ2(q(k)) = 0 for
k = 1, . . . , N. If the sample points q(k) are chosen such that the Gram matrix
G = [gij] ∈ RN×N , where gij = f (‖q(i) − q(j)‖), is non-singular, then the param-
eters are uniquely determined by ω = G−11N , where ω = (ω1, . . . , ωN)

> and
1N ∈ RN is a column vector with all ones. In this example, we choose the radial-
basis function f (r) = r2 ln(r + 1) and six sample points q(k): (1.5, 0), (1.5, 2.6),
(−0.75, 1.3), (−3, 0),(−0.75,−1.3), (1.5,−2.6). The corresponding parameter vec-
tor is w = (−0.048, 0.035,−0.048, 0.035,−0.048, 0.035). The resulting 3D path-
following vector field χP is calculated from (8.25). For the reactive surface, we
choose ϕ(x, y, z) = (x + 2.8)2 + y2 + z2 − 1 and v = (1, 0, 0)> to create the 3D
reactive vector field in (8.26). The gains for the vector fields are k1 = 5, k2 = 2
and kr = 2. We choose c = −0.72 for the repulsive surface; i.e., Q = ϕ−1(c). The
zero-in and zero-out bump functions are the same as (8.30) with l1 = l2 = 0.1.
We also consider the following 3D Dubins car model:

ẋ = s cos θ ẏ = s sin θ θ̇ = uθ ż = uz, (8.32)

where (x, y, z) is the robot’s position in R3, θ ∈ [0, 2π) is the robot’s orientation,
uθ and uz are the control inputs, and s is the constant speed. We follow Theorem
4.24 to design the control inputs uθ and uz. See Fig. 8.10 for the results.

8.8 conclusions

We consider the problem, initially in R2, of following an arbitrary desired path
occluded by a finite number of static or moving obstacles of arbitrary shapes.
This problem, called the VF-CAPF problem, is different from the traditional motion
planning problem with obstacles because no starting point and destination point
are necessary to calculate a feasible path. We design a composite vector field to
solve this problem. To address the issue of motions being “trapped” at a stable
equilibrium, we propose a switching mechanism involving two vector fields. The
path-following and obstacle-avoidance behaviors are provably guaranteed to be
effective. Three extensions of our approach are discussed, taking into account
moving obstacles with measured velocities, vector fields on higher-dimensional
spaces, and nonholonomic robot models. Various numerical simulations support
the theoretical results.

Our approach using the composite vector field or switching vector field has
many advantages; e.g., a) Rigorous theoretical guarantees are provided, which
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(a) 3D view

(b) X-Y view

Figure 8.10: Simulation IV. The solid red ball is the obstacle, and the magenta and orange
surfaces are the repulsive surface and the reactive surface respectively. The
blue curve is the trajectory starting at (2, 1, 1) corresponding to the single-
integrator model, whereas the magenta curve is the trajectory with the
initial condition (x0, y0, z0, θ0) = (0.5,−1, 0.3,−π/2) corresponding to the
3D Dubins car model, where the speed is s = 1. The triangles represent the
poses of the robot at different time instants.
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are usually absent in the literature; b) The collision-avoidance behavior is reactive,
since the trajectory is guided directly by the vector field, and thereby the time-
consuming operations, such as path re-planning or the creation of a symbolic
map, are not required. The vector field is updated easily by adding a new term
once a new obstacle is encountered. c) The composite vector field can be naturally
extended to spaces of arbitrary dimensions. d) The shapes of the desired path
and the obstacles are very general; e.g., convexity and no specific geometric
relationships are required. However, there are also some disadvantages; for
instance, the theoretical analysis for the high-dimensional case is challenging, and
the switching vector field possibly renders trajectories tortuous and complicated.



9 A S I N G U L A R I T Y- F R E E G U I D I N G
V E C TO R F I E L D F O R R O B OT
N AV I G AT I O N

In robot navigation tasks, such as UAV highway traffic monitoring, it is
important for a mobile robot to follow a specified desired path. However, most
of the existing path-following algorithms cannot guarantee global convergence
to desired paths or enable following self-intersecting desired paths due to the
existence of singular points where algorithms return unreliable or even no
solutions. One typical example arises in vector-field guided path-following (VF-PF)
algorithms. These algorithms are based on a vector field, and the singular
points are exactly where the vector field becomes zero. Conventional VF-PF

algorithms generate a vector field of the same dimensions as those of the space
where the desired path lives. In this chapter, we show that it is mathematically
impossible for conventional VF-PF algorithms to achieve global convergence
to desired paths that are self-intersecting or even just simple closed (precisely,
homeomorphic to the unit circle). Motivated by this new impossibility result,
we propose a novel method to transform self-intersecting or simple closed
desired paths to non-self-intersecting and unbounded (precisely, homeomorphic
to the real line) counterparts in a higher-dimensional space. Corresponding to
this new desired path, we construct a singularity-free guiding vector field on
a higher-dimensional space. The integral curves of this new guiding vector
field is thus exploited to enable global convergence to the higher-dimensional
desired path, and therefore, the projection of the integral curves on a lower-
dimensional subspace converge to the physical (lower-dimensional) desired
path. Rigorous theoretical analysis is carried out for the theoretical results
using dynamical systems theory. In addition, we show both by theoretical
analysis and numerical simulations that our proposed method is an extension
combining conventional VF-PF algorithms and trajectory tracking algorithms.
Finally, to show the practical value of our proposed approach for complex
engineering systems, we conduct outdoor experiments with a fixed-wing
airplane in windy environment to follow both 2D and 3D desired paths.

This chapter is based on

• W. Yao, H. G. de Marina, B. Lin, and M. Cao, “Singularity-free guiding vector field for robot
navigation,” IEEE Transactions on Robotics (TRO), vol. 37, no. 4, 2021.

• W. Yao, H. G. de Marina, and M. Cao, “Vector field guided path following control: Singularity
elimination and global convergence,” in 2020 59th IEEE Conference on Decision and Control
(CDC), IEEE, 2020, pp. 1543–1549.
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9.1 introduction
Although the VF-PF algorithms are intuitive and easy to implement, the rigorous
analysis remains nontrivial for general desired paths [31], [63], [156], [157].
Significant difficulty in the analysis and application of the VF-PF algorithms arises
when there are singular points1 in the vector field (see Fig. 9.1a and Fig. 9.1b).
In such a case, the convergence of trajectories to the desired path cannot be
guaranteed globally, and the normalization of the vector field at those points is
not well-defined [50], [63], [156], [157]. In [50], it is assumed that these singular
points are repulsive to simplify the analysis, while this assumption is dropped
in [63] for a planar desired path and in Chapter 4 for a desired path in 3D.
However, to the best of our knowledge, few efforts have been made on dealing
with singular points directly or on eliminating them effectively. Recently, [119]
presents a simple treatment of the singular point: the robot does not change its
course inside a ball centered at the singular point. Under some conditions, the
Lyapunov function evaluated at the exit point is proved to be smaller than that at
the entry point.

Related to the existence of singular points, one of the challenges for the VF-PF

navigation problem is to follow a self-intersecting desired path. Many existing
VF-PF algorithms (e.g., [50], [63], [74], [104], [156]) fail to fulfill this task. This is
rooted in the fact that the vector field degenerates to zero at the crossing points
of a self-intersecting desired path, leading to a zero guidance signal, and thus
a robot can get stuck on the desired path (see Fig. 9.1b). Due to the existence
of singular points on the desired path, some effective VF-PF algorithms such as
[63], [156], [157] become invalid simply because the assumptions are violated in
this case. In fact, this task is also challenging for other existing path-following
methods, since in the vicinity of the crossing points, many methods are “ill-
defined”. For example, the line-of-sight (LOS) method [40] is not applicable as
there is not a unique projection point in the vicinity of the intersection of the
desired path. Indeed, many existing path-following algorithms either focus on
simple desired paths such as circles or straight lines [104], [137], [172], or only
deal with desired paths that are sufficiently smooth [50], [63], [156], [157]. One
might retreat to the virtual-target path-following algorithm [134]. In this method,
a virtual target has its own dynamics travelling on the desired path; thus the
path-following navigation problem is implicitly converted to a target tracking
problem. Although through this conversion, it is possible for a robot to follow a
self-intersecting desired path, this method is inherently a tracking approach, and
thus may inherit the performance limitations mentioned before, such as limited
path-following accuracy.

Another challenging task arising from the VF-PF methods is the description
of the desired path, which is crucial for the derivation of the vector field. For

1 A point where a vector field becomes zero is called a singular point of the vector field [77, p. 219].
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Figure 9.1: The normalized vector fields [63] for a circle path described by φ(x, y) =
x2 + y2 − 1 = 0 in (a) and a figure “8” path described by φ(x, y) = x2 −
4y2(1− y2) = 0 in (b). The red points are the singular points of the (un-
normalized) vector fields.

generality, the desired path is usually determined by the intersection of several
hyper-surfaces represented by the zero-level sets of some implicit functions [50],
[63], [119], [127], [156], [157]. For planar desired paths, for example, the implicit
function of a star curve might be as complicated as that in [81], while for desired
paths in a higher-dimensional space, it is counter-intuitive to create hyper-surfaces
such that the intersection is precisely the desired path, such as a helix. On the
other hand, many geometric curves are described by parametric equations [35]
rather than implicit functions. It is possible to transform the parametric equations
to implicit functions and then derive the vector field, but this might not always
be feasible and is computationally expensive. The restrictive characterization of
the desired path limits the applicability of VF-PF algorithms to some extent.

In this chapter, we improve the VF-PF methodology in the sense that we address
the aforementioned three issues: the existence of singular points, the obstacle of
dealing with self-intersecting paths, and the difficulty of representing a generic
desired path. Specifically, based on the design of guiding vector fields in Chapter
4, we use an intuitive idea to eliminate singular points of the vector field so that
global convergence to the desired path, even if self-intersecting, is guaranteed.
The general idea is to extend the dimensions of the vector field and eliminate
singular points simultaneously. This procedure naturally leads to a simple way
to transform the descriptions of desired paths from parameterized forms to the
intersection of several hyper-surfaces, which are required in creating a guiding
vector field.
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It is important to clarify the terminology used throughout this chapter. In many
VF-PF algorithms, the desired path is a geometric object which is not necessarily
parameterized. In a precise mathematical language, we assume that the desired
path is a one-dimensional connected differential manifold. Therefore, we can generally
classify desired paths into two categories: those homeomorphic to the unit circle
S1 if they are compact, and those homeomorphic to the real line R otherwise
[76, Theorem 5.27]. This assumption is not a restriction, since many desired
paths in practice, such as a circle, an ellipse, a Cassini oval, a spline and a
straight line, satisfy this assumption. For ease of exposition, we refer to those
desired paths homeomorphic to the unit circle as simple closed desired paths,
and those homeomorphic to the real line as unbounded desired paths. Note
that self-intersecting paths do not satisfy this assumption. Nevertheless, we will
introduce in the sequel how to transform a self-intersecting physical desired path
to a non-self-intersecting and unbounded higher-dimensional desired path such
that the assumption holds to apply our algorithm.

9.1.1 Contributions

Firstly, we show by rigorous topological analysis that guiding vector fields with
the same dimension as the desired path (e.g., [63], [81], [89], [157]) cannot
guarantee the global convergence to a simple closed or self-intersecting desired
path (see Theorem 9.11 in Section 9.3). With the dichotomy of convergence
discussed in the chapter, this implies that singular points of the vector field
always exist for a simple closed or self-intersecting desired path regardless of which
hypersurfaces one uses to characterize the desired path. This explains why
many VF-PF algorithms in the literature cannot guarantee global convergence in
the Euclidean space to a simple closed desired path. We note that excluding
singular points is important in practice (e.g., for fixed-wing aircraft guidance and
navigation) since degenerated or pathological solutions of system dynamics can
be safely avoided. Therefore, this topological obstacle is the primary motivation
of the subsequent theoretical development including the introduction of extended
dynamics (see Section 9.4) and the creation of singularity-free guiding vector
fields (see Section 9.5).

Secondly, due to the aforementioned topological obstruction, we improve
the existing VF-PF algorithms such that all singular points are removed, and
global convergence of trajectories to the desired path is rigorously guaranteed
(see Section 9.4 and Section 9.5). We overcome this topological obstruction
by changing the topology of the desired paths. Specifically, we transform a
physical simple closed or self-intersecting desired path to a new unbounded and
non-self-intersecting desired path in a higher-dimensional space. We then derive the
corresponding guiding vector field on this higher-dimensional space, which is
guaranteed to have no singular points.
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Thirdly, our proposed method to create this new singularity-free guiding
vector field is proved to enjoy several appealing features (see Section 9.5.2). For
example, we provide theoretical guarantees for global exponential convergence
of trajectories of system dynamics to the desired path. In addition, the new
system dynamics with the singularity-free guiding vector field is robust against
perturbation, such as noisy position measurements (see Feature 3 in Section 9.5.2).
Moreover, using our proposed method, it becomes straightforward to represent
hyper-surfaces of which the intersection is the new higher-dimensional desired
path, as long as a parametrization of the physical (lower-dimensional) desired
path is available (see Feature 2 in Section 9.5.2).

Last but not least, we successfully conduct experiments using a fixed-wing
aircraft to verify the effectiveness of our proposed VF-PF algorithm in 3D (see
Section 9.6), in addition to the experiment with an e-puck robot [94] in our
previous preliminary work [164]. This verifies the practical significance of our
proposed method for highly complex autonomous vehicles. We also discuss and
conclude that our proposed VF-PF algorithm combines and extends features of the
conventional VF-PF algorithms and trajectory tracking algorithms (see Section 9.7).
While we do not claim that our proposed new singularity-free guiding vector
field is always superior than traditional trajectory tracking algorithms in every
application scenario (such as quadcopter attitude tracking), we emphasize that it
significantly improves conventional VF-PF algorithms by providing a global solu-
tion and enabling the path-following behavior of complicated or unconventional
desired paths (e.g., a self-intersecting Lissajous curve). This is imperative and
irreplaceable in applications such as fixed-wing aircraft guidance and navigation
where convergence to and propagation along a desired path from every initial
position is required.

The remainder of this chapter is organized as follows. Section 9.2 introduces
conventional guiding vector fields for path following. In Section 9.3, a theorem
about the impossibility of global convergence to simple closed or self-intersecting
desired paths using the conventional VF-PF algorithm is elaborated. This is the
main motivation for the design of higher-dimensional guiding vector fields, which
will be utilized in Section 9.4 through extended dynamics. Based on the previous
sections, the construction approach of singularity-free guiding vector fields is
presented in Section 9.5. In addition, several appealing features of this method
are highlighted in this section. Then experiments with a fixed-wing aircraft
are conducted to validate the theoretical results in Section 9.6. Following this,
Section 9.7 discusses how our proposed approach can be viewed as a combined
extension of VF-PF algorithms and trajectory tracking algorithms. Finally, Section
9.9 concludes the chapter.
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9.2 guiding vector fields for path following
In this section, we introduce the vector-field guided path-following (VF-PF) navi-
gation problem and the guiding vector fields. The VF-PF navigation problem in
Rn is the same as Problem 1.1, except thatM is changed to Rn. For completeness
of this chapter, we still state the problem as follows.

Problem 9.1 (VF-PF navigation problem in Rn). Given a desired path P ⊆ Rn

defined in (9.1), the VF-PF navigation problem is to design a continuously differen-
tiable vector field χ : Rn → Rn for the differential equation ξ̇(t) = χ

(
ξ(t)

)
such

that the two conditions below are satisfied:
1) There exists a neighborhood D ⊆ Rn of the desired path P such that

for all initial conditions ξ(0) ∈ D, the distance dist(ξ(t),P) between the tra-
jectory ξ(t) and the desired path P approaches zero as time t → ∞; that is,
limt→∞ dist(ξ(t),P) = 0;

2) If a trajectory starts from the desired path, then the trajectory stays on the
path for t ≥ 0 (i.e., ξ(0) ∈ P =⇒ ξ(t) ∈ P for all t ≥ 0). In addition, the vector
field on the desired path is non-zero (i.e., 0 /∈ χ(P)).

In this chapter, we only investigate the guiding vector field on the Euclidean
space Rn.

9.2.1 Guiding vector fields on Rn

Suppose a desired path in the n-dimensional Euclidean space is described by the
intersection of (n− 1) hypersurfaces; i.e.,

P = {ξ ∈ Rn : φi(ξ) = 0, i = 1, . . . , n− 1}, (9.1)

where φi : Rn → R, i = 1, . . . , n − 1, are of differentiability class C2. It is
naturally assumed that P in (9.1) is nonempty and connected. We further require
the regularity of the desired path as shown later in Assumption 9.5. For better
understanding, φi(·) = 0 can be regarded as (n− 1) constraints, resulting in a
one degree-of-freedom desired path.

Remark 9.2. Topologically, the desired path P itself is one-dimensional, indepen-
dent of the dimensions of the Euclidean space where it lives. However, with
slight abuse of terminology and for convenience, the desired path P is called an
n-D (or nD) desired path if it lives in the n-dimensional Euclidean space Rn and
not in any lower-dimensional subspace W ⊆ Rn (i.e., the smallest subspace the
desired path lives in). For example, a planar desired path might be defined in the
three-dimensional Euclidean space R3, but we only consider the two-dimensional
subspaceW ⊆ R2 where it is contained, and it is thus natural to call it a 2D (or
2-D) desired path rather than a 3D (or 3-D) desired path. Sometimes, for simplic-
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ity, we refer to a tangent vector field on the n-dimensional Euclidean space Rn as
an n-dimensional vector field, and we say that this vector field is n-dimensional. /

The vector field χ : Rn → Rn is designed as below:

χ = ∧(∇φ1, . . . ,∇φn−1)−
n−1

∑
i=1

kiφi∇φi, (9.2)

where ∇φi is the gradient of φi, ki > 0 are constant gains, and ∧ : Rn × · · · ×
Rn → Rn is the wedge product. In particular, let pi = (pi1, · · · , pin)

> ∈ Rn,
i = 1, . . . , n− 1, and bj ∈ Rn be the standard basis column vector with the jth
component being 1 and the other components being 0. Then an intuitive formal
expression for ∧(p1, . . . , pn−1) is

∧(p1, . . . , pn−1) =

∣∣∣∣∣∣∣∣∣∣∣

b1 b2 · · · bn

p11 p12 · · · p1n
...

...
. . .

...

pn−1,1 pn−1,2 · · · pn−1,n

∣∣∣∣∣∣∣∣∣∣∣
. (9.3)

In other words, ∧(p1, . . . , pn−1) is obtained by the cofactor expansion along the
first row of (9.3), where bi should initially be regarded as scalars, and in the final
evaluation replaced by the basis vectors [42, pp. 241-242].

To simplify the notations, we define a matrix N(ξ) =(
∇φ1(ξ), · · · ,∇φn−1(ξ)

)
∈ Rn×(n−1), a positive definite gain matrix

K = diag{k1, . . . , kn−1} ∈ R(n−1)×(n−1) and a C2 function e : Rn → Rn−1

by stacking φi; that is,

e(ξ) =
(
φ1(ξ), · · · , φn−1(ξ)

)> ∈ Rn−1. (9.4)

In addition, we define ⊥φ : Rn → Rn by ξ ∈ Rn 7→ ×
(
∇φ1(ξ), . . . ,∇φn−1(ξ)

)
.

Therefore, the vector field (9.2) can be compactly written as

χ(ξ) = ⊥φ(ξ)− N(ξ)Ke(ξ). (9.5)

Using this notation, the desired path is equivalent to

P = {ξ ∈ Rn : e(ξ) = 0}. (9.6)

We call e(ξ) the path-following error or simply error between the point ξ ∈ Rn and
the desired path P .

Remark 9.3. As mentioned in Sections 1.1.4 and 1.1.5 in Chapter 1, many vector
fields in the literature can be seen as variants of the vector field in (9.2). Note
that we do not consider time-varying gains or components in the vector field as
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[50], [74] do. For one thing, this simplifies the structure of the vector field and
facilitates the practical implementation; for another, this clarifies the topological
property of these vector fields as studied in Section 9.3. For convenience, we
refer to these (time-invariant) vector fields in the literature as conventional vector
fields. /

9.2.2 Assumptions

To justify using the norm of the path-following error ‖e(·)‖ instead of dist(·,P),
we need some assumptions that are easily satisfied in practice (see Chapter 3). To
this end, we define two sets. The singular set consisting of singular points of a
vector field is defined as below:

C = {ξ ∈ Rn : χ(ξ) = 0}. (9.7)

Another related set is

H = {ξ ∈ Rn : N(ξ)Ke(ξ) = 0} . (9.8)

It can be proved that H = P ∪ C.

Lemma 9.4. It holds that H = P ∪ C.

Proof. First, it is easy to see that for any point ξ ∈ P ∪ C, we have ξ ∈ H,
thus P ∪ C ⊆ H. Second, for any point ξ ′ ∈ H, it follows that N(ξ ′)Ke(ξ ′) =

∑n−1
i=1 kiφi(ξ

′)∇φi(ξ
′) = 0. If e(ξ ′) = 0, then ξ ′ ∈ P . If e(ξ ′) 6= 0, then the former

equation implies that ∇φi(ξ
′), i = 1, . . . , n− 1, are linearly dependent (recalling

that ki > 0); hence the first term of the vector field becomes zero (i.e., ⊥φ(ξ) = 0).
Since ξ ′ ∈ H, the second term of the vector field is also zero, thus the vector
field χ(ξ ′) = 0 and ξ ′ ∈ C. The reasoning shows that H ⊆ P ∪ C. Combining
P ∪ C ⊆ H and H ⊆ P ∪ C, it is indeed true that H = P ∪ C.

As with Chapter 7, we propose the following standard assumptions.

Assumption 9.5. There are no singular points on the desired path. More precisely,
C is empty or otherwise there holds dist(C,P) > 0.

Assumption 9.6. In view of (9.6), as the norm of the path-following error ‖e(ξ)‖
approaches zero, the trajectory ξ(t) approaches the desired path P . Similarly,
in view of (9.8), as the “error” ‖N(ξ)Ke(ξ)‖ approaches zero, the trajectory ξ(t)
approaches the set H.

Due to Assumption 9.5, Lemma 5.7 holds here. Namely, the zero vector
0 ∈ Rn−1 is a regular value of the C2 function e in (9.4), and hence the desired
path P is a C2 embedded submanifold in Rn.
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Remark 9.7. Henceforth the “regularity” of the desired path is guaranteed; namely,
the desired path P is assumed to be a one-dimensional connected manifold,
which can generally be classified into those homeomorphic to the unit circle if
they are compact, and those homeomorphic the real line otherwise [76, Theorem
5.27]. Thus throughout the chapter, we use the notions of simple closed desired
paths and desired paths homeomorphic to the unit circle interchangeably. The same
applies to unbounded desired paths and desired paths homeomorphic to the real line.
Note that self-intersecting desired paths do not satisfy Assumption 9.5, as shown
later in Proposition 9.8, but we will propose a method in Section 9.5 to transform
them into unbounded and non-self-intersecting desired paths, which are then
homeomorphic to the real line R. /

9.3 issues on the global convergence to de-
sired paths

In this section, we show that, under some conditions, it is not possible to guar-
antee global convergence to desired paths using the existing VF-PF algorithms
as introduced in Section 9.2. More specifically, given a desired path P ⊆ Rn

as described in (9.1), we investigate solutions (trajectories) of the autonomous
ordinary differential equation:

ξ̇(t) = χ
(
ξ(t)

)
, (9.9)

where χ is defined in (9.5). We consider the cases of self-intersecting and simple
closed desired paths respectively.

We first show that the crossing points of a self-intersecting desired path P are
singular points of the corresponding vector field χ in (9.2).

Proposition 9.8. If the desired path P in (9.1) is self-intersecting, then the crossing
points of the desired path are singular points of the vector field χ in (9.2).

Proof. Since c ∈ P is a crossing point, we have e(c) = 0, and thus the vector field
at the crossing point is simplified to χ(c) = ⊥φ(c) in view of (9.5). Next we show
that the gradients at the crossing point ∇φi(c) are linearly dependent, and hence
χ(c) = 0. Suppose, on the contrary, the gradients are not linearly dependent.
Then we can use the implicit function theorem [49] to conclude that there is a
unique curve in a neighborhood of c satisfying e(ξ) = 0, where ξ ∈ Rn. But this
contradicts the fact that P is self-intersecting. Therefore, the gradients at the
crossing point are indeed linearly dependent.

Remark 9.9. This proposition shows that 0 ∈ χ(P) when P is a self-intersecting
desired path, and therefore, the VF-PF navigation problem (Problem 9.8) cannot
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be addressed as the second requirement about 0 /∈ χ(P) is always violated. Note
that Assumption 9.5 does not hold in this case, but we will propose in the sequel
an approach to transform a self-intersecting desired path such that Assumption
9.5 holds. /

In Fig. 9.1b, for example, the 2D desired path resembling the figure “8” is
self-intersecting. It can be numerically calculated that the vector field at the
crossing point is zero. This is intuitive in the sense that there is no “preference”
for the vector at this point to point to either the left or right portion of the desired
path, leaving the only option of zero.

Now we consider simple closed desired paths. In the planar case, due to the
Poincaré-Bendixson theorem (see Theorem 2.15), there is at least one singular
point of the 2D vector field in the region enclosed by the simple closed desired
path. Thus we can conclude that global convergence to a simple closed planar
desired path is not possible. However, this conclusion cannot be trivially gener-
alized to the higher-dimensional case since the Poincaré-Bendixson theorem is
restricted to the planar case. Nevertheless, we can still reach this conclusion with
some topological analysis.

Proposition 9.10. If an n-D desired path P ⊆ Rn described by (9.1) is simple closed,
under the dynamics (9.9) where the guiding vector field χ : Rn → Rn is in (9.2), then it
is not possible to guarantee the global convergence of trajectories of (9.9) to the desired
path P ; precisely, the domain of attraction of P cannot be Rn.

Proof. This is a direct consequence of Theorem 5.27 in Chapter 5. An alternative
proof particularized to the Rn case is provided in Section 9.8.

Based on Proposition 9.8 and Proposition 9.10, we can reach the following key
statement about the impossibility of global convergence to some desired paths.

Theorem 9.11 (Impossibility of global convergence). If an n-D desired path P ⊆ Rn

described by (9.1) is simple closed or self-intersecting, then it is not possible to guarantee
the global convergence to the desired path with respect to the dynamics in (9.9) with the
n-dimensional guiding vector field χ in (9.2); more precisely, the domain of attraction of
P cannot be Rn.

Proof. If the desired path P is self-intersecting, then by Proposition 9.8, there is
at least one singular point on the desired path. Obviously, the path-following
problem formulated by Problem 9.1 cannot be solved. If the desired path P is
simple closed, then the global convergence to the desired path is impossible by
Proposition 9.10.

Remark 9.12. We note that the topological obstacle to global convergence to the
desired path roots in two aspects: i) the geometry of the desired path: being
either simple closed or self-intersecting; ii) the time-invariance property of the
vector field. Note that a state-dependent positive scaling (e.g., the normalization)
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of vector fields does not affect the topological properties of interest (i.e., the phase
portrait, or the convergent results) [25, Proposition 1.14]. /

To overcome this topological obstacle and let Assumption 9.5 be satisfied
even for self-intersecting desired paths, we propose a new idea in the sequel to
construct unbounded and non-self-intersecting desired paths from the originally
simple closed or self-intersecting desired paths by “cutting” and “stretching”
them in a higher-dimensional space. Indeed, such a higher-dimensional desired
path will codify or contain information about the (lower-dimensional) physical
desired path. Based on the proposed higher-dimensional desired paths, we can
derive a guiding vector field on this higher-dimensional space and show that
its singular set is empty. However, to take advantage of the new guiding vector
field, we need to transform (or project in the linear transformation case) its integral
curves into a lower-dimensional subspace that contains the information of the
physical desired path. The details of transformation into another space will
be discussed in Section 9.4, and the detailed construction of a singularity-free
guiding vector field on a higher-dimensional space will be presented in Section
9.5.

9.4 extended dynamics and convergence re-
sults

In this section and the subsequent sections, we consider an m-dimensional Eu-
clidean space Rm, where m > n. The reason is self-evident as the chapter
develops, but it is not necessary to bother with this difference now. To proceed,
we introduce the extended dynamics and derive related convergence results. The
extended dynamics relates to a transformation operator defined as follows:

Definition 9.13. A transformation operator is a function Gl : Rm → Rm which
is twice continuously differentiable and globally Lipschitz continuous with the
Lipschitz constant l.

One can observe that the corresponding Jacobian matrix function of a trans-
formation operator DGl = ∂Gl/∂x : Rm → Rm×m is locally Lipschitz continuous,
where x is the argument of Gl . The transformation operator is able to transform
a space into another space (or subspace). One example is a linear transformation
operator defined by Gl(x) = Ax, where A is a non-zero matrix, called the matrix
representation [140, Remark 6.1.15] of this particular linear transformation operator
Gl . Now we introduce the extended dynamics as follows.

Lemma 9.14 (Extended dynamics). Let χ : D ⊆ Rm → Rm be a vector field that is
locally Lipschitz continuous. Given an initial condition ξ(0) = ξ0 ∈ D, suppose that ξ(t)
is the unique solution to the differential equation ξ̇(t) = χ

(
ξ(t)

)
, then

(
ξ(t), trsξ(t)

)
∈
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R2m, where trsξ(t) := Gl
(
ξ(t)

)
and Gl is a transformation operator, is the unique

solution to the following initial value problem:ξ̇(t) = χ
(
ξ(t)

)
ξ(0) = ξ0

trs
ξ̇(t) = DGl

(
ξ(t)

)
· χ
(
ξ(t)

) trsξ(0) = Gl(ξ0).
(9.10)

Moreover, if the trajectory ξ(t) asymptotically converges to some set A 6= ∅ ⊆ Rm, then
trsξ(t) asymptotically converges to the transformed set

trsA := Gl(A) = {p ∈ Rm : p = Gl(q), q ∈ A}.

Proof. Due to the twice continuous differentiability of the transformation operator
Gl , the corresponding Jacobian matrix function DGl = ∂Gl/∂x : Rm → Rm×m

is locally Lipschitz continuous, where x is the argument of Gl . Therefore, the
product of the vector field χ and the Jacobian DGl are also locally Lipschitz
continuous. It follows that

(
ξ(t), trsξ(t)

)
∈ R2m, where trsξ(t) = Gl

(
ξ(t)

)
, is the

unique solution to (9.10) [25]. Recall that l is the (global) Lipschitz constant of Gl .
Fix t, then

dist(trsξ(t), trsA) = inf{‖ trsξ(t)− p‖ : p ∈ trsA}
= inf{‖Gl

(
ξ(t)

)
− Gl(q)‖ : q ∈ A}

≤ inf{l‖ξ(t)− q‖ : q ∈ A}
= l · dist(ξ(t),A).

Since ξ(t) asymptotically converges to A, we have dist(ξ(t),A) → 0 as t → ∞.
In other words, for any ε > 0, there exists a T > 0, such that for all t ≥ T,
dist(ξ(t),A) < ε/l; hence dist(trsξ(t), trsA) ≤ l · dist(ξ(t),A) < ε. Therefore,
dist(trsξ(t), trsA)→ 0 as t→ ∞. Thus the transformed solution trsξ(t) asymptoti-
cally converges to the transformed set trsA.

We call the ordinary differential equation with the initial condition in (9.10) the
extended dynamics. Correspondingly, trsξ(t) := Gl

(
ξ(t)

)
is called the transformed

solution or transformed trajectory of (9.10). Before presenting Corollary 9.16 related
to the VF-PF navigation problem, we first define the transformed desired path and
the transformed singular set.

Definition 9.15. The transformed desired path trsP of P ⊆ Rm in (9.6) and the
transformed singular set trsC of C ⊆ Rm in (9.7) are defined below:

trsP := Gl(P) = {p ∈ Rm : p = Gl(q), q ∈ P} (9.11)
trsC := Gl(C) = {p ∈ Rm : p = Gl(q), q ∈ C}. (9.12)



9.4 extended dynamics and convergence results 179

In some practical applications, it is desirable to scale the vector field to have
a specified constant length. This is useful if a robot takes the vector field as
the control input directly and is required to move at a constant speed. In this
case, the properties of the integral curves of the scaled vector field are stated
in the corollary below. Recall that the solution x(t) to an initial value problem
ẋ = f (x), x(0) = x0, where f (x) is sufficiently smooth, is not always possible to
be prolonged to infinity. In other words, the solution might only be well-defined
in a finite time interval [0, t∗), where t∗ < ∞ [25]. The time instant t∗ is called the
maximal prolonged time of the solution.

Corollary 9.16. Suppose the desired path P in (9.6) is unbounded (i.e., P ≈ R). Let
χ : D ⊆ Rm → Rm be the vector field defined in (9.2). Suppose ξ(t) is the unique
solution to the initial value problem ξ̇(t) = sχ̂

(
ξ(t)

)
, ξ(0) = ξ0 /∈ C, where s > 0 is a

constant and ·̂ is the normalization operator. Consider the following dynamicsξ̇(t) = sχ̂
(
ξ(t)

)
ξ(0) = ξ0 /∈ C

trs
ξ̇(t) = DGl · sχ̂

(
ξ(t)

) trsξ(0) = Gl(ξ0),
(9.13)

where Gl is a transformation operator. Suppose t∗ ≤ ∞ is the maximal prolonged time of
the transformed solution trsξ(t) to (9.13). Then trsξ(t) asymptotically converges to the
transformed desired path trsP in (9.11) as t→ ∞ or the transformed singular set trsC in
(9.12) as t→ t∗.

Proof. First consider the differential equation ξ̇ = χ(ξ). Using the same Lyapunov
function candidate as (9.25) and the argument in the proof of Proposition 9.10,
we have V̇(e) ≤ 0. In addition, the norm of the first term of the scaled vector
field sχ̂(ξ) is s‖⊥φ‖/‖χ‖, and it is obviously upper bounded in Rm. Since
the new vector field sχ̂(ξ) differs from the actual vector field χ(ξ) only by the
magnitude of each vector, the two differential equations ξ̇ = χ(ξ) and ξ̇ = sχ̂(ξ)
have the same phase portrait in Rm \ C [25, Proposition 1.14]. Therefore, from
the dichotomy convergence result proved in Proposition 4.14, the solution to
ξ̇ = sχ̂(ξ) will converge to either P or C for initial conditions ξ(0) ∈ Rm \ C.

Note that if the maximal prolonged time is t∗ < ∞, then the solution to
ξ̇ = sχ̂(ξ) must converge to the singular set C. This is shown by contradiction.
Since ‖ξ̇‖ = s < ∞, ξ∗ := lim

t→t∗
ξ(t) = ξ(0) +

∫ t∗
0 ξ̇(t)dt exists. Suppose χ(ξ∗) 6= 0,

then we can define the solution at t = t∗, then it can be further prolonged to
t∗ + ε for some ε > 0, contradicting that t∗ is the maximal prolonged time. This
shows that χ(ξ∗) = 0 and thus the solution converges to C.

Finally, suppose ξ(t) is the unique solution to the initial value problem ξ̇(t) =
sχ̂
(
ξ(t)

)
, ξ(0) = ξ0, then by Lemma 9.14,

(
ξ(t), trsξ(t)

)
is the solution to (9.13).

Therefore, the transformed trajectory trsξ(t) asymptotically converges to the
transformed desired path trsP as t→ ∞ or the transformed singular set trsC as
t→ t∗.
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Remark 9.17. Due to the normalization of the vector field in (9.13), the right-hand
side of the differential equation is not well defined at singular points of the vector
field. Therefore, if the transformed singular set trsC is bounded, then the maximal
interval to which the transformed trajectory trsξ(t) can be prolonged is only finite
when the transformed trajectory trsξ(t) is converging to trsC. This happens when
the initial value ξ(0) is in the invariant manifold of the singular set C. /

The previous lemma states that the transformed trajectory converges to either
the transformed desired path or the transformed singular set for initial conditions
trsξ(0) ∈ Rm \Gl(C), while the latter case is undesirable. A preferable situation is
where the (transformed) singular set is empty. Moreover, as indicated by Theorem
9.11, to seek for global convergence, the only possibility is to consider unbounded
and non-self-intersecting desired paths (i.e., P ≈ R). Therefore, we reach the
following corollary.

Corollary 9.18 (Global convergence to trsP). Suppose the desired path P in (9.11)
is unbounded (i.e., P ≈ R). If C = ∅ (equivalently, trsC = ∅), then the transformed
trajectory trsξ(t) of (9.13) globally asymptotically converges to the transformed desired
path trsP as t→ ∞ in the sense that the initial condition ξ(0) (and hence trsξ(0)) can
be arbitrarily chosen in Rm.

As will be shown later, only the second differential equation of (9.10) or (9.13)
is relevant to the physical robotic system. This corollary thus motivates us to
design a (higher-dimensional) vector field such that the singular set is empty, in
which case global convergence to the (transformed) desired path is guaranteed.
In the next section, we will introduce an intuitive idea to “cut” and “stretch” a
possibly simple closed or self-intersecting physical desired path and create a
higher-dimensional singularity-free vector field.

9.5 high-dimensional singularity-free guid-
ing vector fields

In this section, we explain how to implicitly construct an unbounded desired
path from the physical desired path (possibly simple closed or self-intersecting)
together with a higher-dimensional guiding vector field without any singular
points (a.k.a, singularity-free guiding vector field).

For simplicity, we restrict the transformation operator Gl : Rm → Rm to a linear
one defined by Gl(x) = Pax, where Pa ∈ Rm×m is a non-zero matrix defined by

Pa = I − ââ>, (9.14)

where I is the identity matrix of suitable dimensions and â = a/‖a‖ ∈ Rm is a
normalized non-zero vector. In this case, Gl is actually a linear transformation
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that projects an arbitrary vector to the hyperplane orthogonal to the given non-
zero vector a, and Pa is the matrix representation of Gl . One can observe that
the linear transformation Gl is globally Lipschitz continuous with the Lipschitz
constant l = ‖Pa‖ = 1, where ‖ · ‖ is the induced matrix two-norm. In addition,
the Jacobian is simply DGl = Pa.

Before formulating the problem in the sequel, we define the coordinate projection
function π(1,...,n) : Rm → Rn as

π(1,...,n)(x1, . . . , xn, . . . , xm) = (x1, . . . , xn),

where m > n. In other words, the coordinate projection function π(1,...,n) takes
only the first n components of an m-dimensional vector and generates a lower-
dimensional one.

Problem 9.19. Given an n-D physical desired path2 phyP in Rn, we aim to find
an m-D desired path hghP in Rm, where m > n, which satisfies the following
conditions:

1) There exist functions φi(·), i = 1, . . . , m− 1, such that hghP is described by
(9.1);

2) The singular set hghC of the higher-dimensional vector field hghχ : Rm → Rm

in (9.2) corresponding to hghP is empty;
3) There exists a transformation operator Gl : Rm → Rm such that

π(1,...,n)(
trsP) = phyP , where the transformed desired path trsP = Gl(

hghP).

Remark 9.20. It is important to distinguish among the physical desired path phyP ,
the higher-dimensional desired path hghP and the transformed desired path trsP . A
major difference is the dimensions of their ambient space; that is, phyP ⊆ Rn,
while hghP , trsP ⊆ Rm and m > n. Although the higher-dimensional desired
path hghP and the transformed desired path trsP both live in Rm, the transformed
desired path trsP lives in a subspaceW ⊆ Rm probably with dim(W) < m since
trsP = Gl(

hghP). Indeed, for the case of a linear transformation operator in (9.14),
the transformed desired path trsP = Pa(

hghP) lives in the orthogonal complement
subspace W of the linear space spanned by the vector a (i.e., span{a}), and
dim(W) = m− 1 < m. /

Next, we propose the solution to Problem 9.19 in Section 9.5.1. Having found
the higher-dimensional desired path hghP , then we can directly derive the corre-
sponding vector field hghχ defined on Rm by (9.2). Some features of the approach
illustrated in Section 9.5.1 are highlighted in Section 9.5.2.

2 Recall the notion of an n-D desired path in Remark 9.2.
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9.5.1 Construction of a singularity-free guiding vector field

Suppose an n-D physical path phyP is parameterized by

x1 = f1(w), . . . , xn = fn(w), (9.15)

where w ∈ R is the parameter of the desired path and fi ∈ C2, i = 1, . . . , n. We
can simply let

φ1(ξ) = x1 − f1(w), . . . , φn(ξ) = xn − fn(w), (9.16)

where ξ = (x1, . . . , xn, w) has an additional coordinate w now and is an m-
dimensional vector, where m = n + 1. So the m-D desired path is

hghP = {ξ = (x1, . . . , xn, w) ∈ Rm : φi(ξ) = 0, i = 1, . . . , n}. (9.17)

Thus the first requirement of Problem 9.19 is met. Intuitively, the new higher-
dimensional desired path hghP is obtained by “cutting” and “stretching” the n-D
desired path phyP along the additional virtual w-axis (see Fig. 9.7). From the
higher-dimensional desired path hghP ⊆ Rm in (9.17), we obtain the correspond-
ing guiding vector field on the higher-dimensional space Rm by (9.2):

hghχ = ⊥φ −
n

∑
i=1

kiφi∇φi.

It can be calculated that ∇φi =
(
0, . . . , 1, . . . ,− f ′i (w)

)> for i = 1, . . . , n, where

f ′i (w) := d fi(w)
dw and 1 is the i-th component of the gradient vector. Therefore,

⊥φ = (−1)n( f ′1(w), · · · , f ′n(w), 1)> ∈ Rm = Rn+1.

It is interesting that the m-th coordinate of this vector is a constant (−1)n re-
gardless of the specific parametric form of the desired path. This means that
‖⊥φ(ξ)‖ 6= 0 for ξ ∈ Rm globally. From Lemma 5.1, we know that the prop-
agation term ⊥φ of the vector field is always linearly independent from the
convergence term ∑n

i=1 kiφi∇φi unless they are zero vectors. However, as we have
shown that ‖⊥φ‖ 6= 0 in Rm globally, this reveals the appealing property that
the vector field hghχ(ξ) 6= 0 for any point ξ ∈ Rm, implying that there are no
singular points in the higher-dimensional space Rm; i.e., hghC = ∅. Thus, the
second requirement of Problem 9.19 (as well as a related condition in Corollary
9.18) is satisfied.

To let the third requirement of Problem 9.19 be satisfied, we retreat to a linear
transformation operator with a matrix representation Pa. One of the simplest
linear transformation operators corresponds to a = bn+1 ∈ Rm, which is a
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standard basis column vector with the (n + 1)-th component being 1 and the
other components being 0. This is used to transform an m-dimensional space to
an n-dimensional subspace by “zeroing” the last coordinate. Specifically, we let
a = bn+1, then the matrix representation of the linear transformation operator is
Pa =

[
In×n 0

0 0

]
, where 0 are zero vectors of suitable dimensions. Observe that the n-

D desired path phyP ⊆ Rn is the orthogonal projection of the higher-dimensional
desired path hghP ⊆ Rm on the plane where w = 0; i.e.,

π(1,...,n)(
hghP) = π(1,...,n)(

trsP) = phyP .

Therefore, the third requirement of Problem 9.19 is also satisfied. By the construc-
tion in (9.17), the higher-dimensional desired path hghP ⊆ Rm satisfying all the
conditions in Problem 9.19 is thus found. Ultimately, we can take advantage of
the new “well-behaved” guiding vector field hghχ ∈ Rm derived from hghP ⊆ Rm

as mentioned above. This result is formally stated in the following theorem.

Theorem 9.21. Suppose an n-D physical desired path phyP ⊆ Rn is parameterized
by (9.15). If φ1, . . . , φn are chosen as in (9.16), then there are no singular points in
the corresponding guiding vector field hghχ : Rn+1 → Rn+1 defined on the (n + 1)-
dimensional space Rn+1. Let a = bn+1 for the linear transformation operator Pa.
Suppose the transformed trajectory of the extended dynamics (9.13) is trsξ(t) :=(

x1(t), . . . , xn(t), w(t)
)>. Then the projected transformed trajectory

prjξ(t) := π(1,...,n)
( trsξ(t)

)
=
(
x1(t), . . . , xn(t)

)>
globally asymptotically converges to the physical desired path phyP as t→ ∞.

Proof. By (9.2) and (9.16), the guiding vector field on the (n + 1)-dimensional
space Rn+1 is

hghχ(x1, . . . , xn, w) =


(−1)n f ′1(w)− k1φ1

...

(−1)n f ′n(w)− knφn

(−1)n + ∑n
i=1 kiφi f ′i (w)

 . (9.18)

As discussed before, the singular set hghC = ∅. According to Corollary
9.18, trsξ(t) globally asymptotically converges to the transformed desired path
trsP = Gl(

hghP) = Pa(
hghP) as t → ∞. Since a> trsξ = a>Paξ = 0, the

(n + 1)-th coordinate w(t) of the transformed trajectory trsξ(t) is equal to 0,
meaning that the transformed trajectory trsξ(t) lies in the subspace W :=
{(x1, . . . , xn+1) ∈ Rn : xn+1 = 0}. Therefore, the projected transformed trajec-
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tory prjξ(t) = π(1,...,n)
( trsξ(t)

)
globally asymptotically converges to the physical

desired path phyP .

Remark 9.22. Note that the proof of convergence to the physical desired path phyP
is indirect. The norm of the path-following error ‖e(·)‖ = ‖

(
φ1(·), . . . , φn(·)

)
‖

captures the distance to the higher-dimensional desired path hghP , taking into
account the additional coordinate w as well. It is shown first that in the higher-
dimensional space Rn+1, the norm of the path-following error ‖e(·)‖ approaches
zero asymptotically. Then the convergence to the transformed desired path trsP
is obtained from Corollary 9.16 (or Corollary 9.18). Due to the special choice of
the linear transformation operator Pa, where a = bn+1, the transformed desired
path trsP is “almost” the same as the physical desired path phyP , except that it
has an additional but constant coordinate w(t) ≡ 0. /

We have shown that, by extending the vector field from Rn to Rn+1, the new
guiding vector field does not have any singular points. Therefore, by using the
extended dynamics, the convergence to the physical desired path is guaranteed
globally. When n > 3, this case corresponds to some configuration spaces, such
as the robot arm joint space in a smooth manifold embedded in Rn. See Chapter
5 for more details.

9.5.2 Features of the approach

There are several intriguing features of our proposed approach discussed above
in Section 9.5.1. These features are summarized below. For ease of narration
and without loss of generality, we take the case of a 2D physical desired path
phyP ⊆ R2 for discussion (i.e., n = 2).

Feature 1. The corresponding higher-dimensional desired path hghP = {ξ ∈
R2+1 : φ1(ξ) = 0, φ2(ξ) = 0} is not self-intersecting. This is due to the fact that a
crossing point must be a singular point (see Proposition 9.8), but we have shown
that there are no singular points in the higher-dimensional guiding vector field. In
fact, the parameter of the desired path w in (9.15) is implicitly transformed to an
additional coordinate of the higher-dimensional desired path. Thus the physical
planar desired path phyP is “cut” and “stretched” into the three-dimensional
Euclidean space, and becomes unbounded and non-self-intersecting along the
additional dimension (see Fig. 9.7). The significance of this feature is that even a
self-intersecting physical desired path phyP described by (9.15) can be successfully
followed by using the new singularity-free guiding vector field, which in fact
corresponds to a non-self-intersecting “stretched” desired path hghP .

Feature 2. This approach facilitates the expression of hypersurfaces characterized
by implicit functions φi. Usually, a parameterized form of the desired path is more
readily available than the hypersurfaces of which the intersection is the desired
path. Therefore, given the parameterized form in (9.15), we do not need to convert
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them into φ(x, y) = 0 and derive the corresponding 2D vector field. Instead, by
simply defining two φ functions as in (9.16), we obtain a singularity-free vector
field hghχ defined on R2+1.

Feature 3. One only needs to examine the boundedness of | f ′i (z)|, i = 1, 2, in
the vicinity of the higher-dimensional desired path hghP to guarantee both the
property of local exponential vanishing of the norm of the path-following error
‖e‖ and the property of robustness against disturbance of the system dynamics
(9.9), while these properties usually require more conditions to be satisfied for
general vector fields (see Chapter 4).

Feature 4. Only Assumption 9.6 is required. Since the new guiding vector field
does not have any singular points, the other assumption, Assumption 9.5, is
vacuously true. This is independent of the specific parametrizations of the
desired path in (9.15).

Feature 5. The additional virtual coordinate can be used to realize scalable dis-
tributed multi-robot coordinated path-following navigation by adding a consen-
sus term (see Chapter 10).

9.6 experiments with an autonomous aircraft
In this section, we demonstrate the effectiveness of our path-following approach
with an autonomous fixed-wing aircraft. In particular, we verify the tracking of
both 2D and 3D self-intersecting desired paths. All the related software has been
developed within the open-source project for autopilots Paparazzi [47]. The codes
only require the corresponding parametric equations to implement other desired
paths3.

9.6.1 The autonomous aircraft and airfield

For the experiments, we use one Opterra as shown in Fig. 9.2. Two elevons actuate
the aircraft at the wings and one motor acts in pushing the configuration. The
vehicle’s electronics consists of the autopilot Apogee, an Ublox GPS receptor, a
Futaba receiver, and a X-Bee S1 radio modem. The Apogee’s core is an STM32F4

microcontroller where our algorithm runs with a fixed frequency of 50Hz, and
all the relevant data are logged in an SD card at 100Hz. The ground segment
consists of a standard laptop with another X-Bee S1 radio modem to monitor the
telemetry and a Futaba transmitter in case of taking over manual control of the
vehicle. The flights took place on July 18, 2020, in Ciudad Real (Spain) with GPS

3 https://github.com/noether/paparazzi/tree/gvf_advanced/sw/airborne/modules/guidance/
gvf_parametric.

https://github.com/noether/paparazzi/tree/gvf_advanced/sw/airborne/modules/guidance/gvf_parametric
https://github.com/noether/paparazzi/tree/gvf_advanced/sw/airborne/modules/guidance/gvf_parametric
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Figure 9.2: Autonomous Opterra 1.2m equipped with Paparazzi’s Apogee autopilot. The
airframe is built by E-Flite / Horizon Hobby company.

coordinates (39.184535,−4.020797) degrees. The weather forecast reported 36◦C
and a South wind of 14 km/h.

9.6.2 Aircraft’s guidance system design

We employ a decoupled vertical and horizontal model for setting the aircraft’s
guiding reference signals. In particular, accounting for the nonholonomic lateral
constraint of the aircraft, we consider the following unicycle model

ẋ = v cos θ ẏ = v sin θ θ̇ = uθ ż = uz, (9.19)

where (x, y, z) is the 3D position, θ is the heading angle on the XY plane, v is
the ground speed, uθ is the angular velocity control/guiding signal to change
the heading, and uz is the guiding signal for the climbing velocity. We will show
how to design the guiding signals uθ and uz, which are injected into the control
system of the aircraft that deals with the nontrivial couplings of the lateral and
vertical modes. Particularly, uθ is tracked by banking the aircraft depending on
the current speed v and the pitch angle to achieve a coordinated turn, and uz is
tracked by controlling the pitch angle and the propulsion to vary the lift and
the vertical component of the pushed force coming from the propeller4. The
experiments will show that our algorithm is compatible with the model (9.19)
and the low-level controller employed in Paparazzi for a fixed-wing aircraft.

Note that the wind has a noticeable impact on the ground speed of the aircraft.
Nevertheless, as the experimental results indicate, such a wind speed does not
impact the intended performance of the algorithm. In practice, we consider θ
as the heading angle (given by the velocity vector), not the attitude yaw angle.
If there is no wind, both angles are the same in our setup. When we consider

4 We leave the reader to check the details of the employed low-level controllers at http://wiki.
paparazziuav.org/wiki/Control_Loops.

http://wiki.paparazziuav.org/wiki/Control_Loops
http://wiki.paparazziuav.org/wiki/Control_Loops
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the heading instead of the yaw for the model (9.19), the aircraft compensates the
lateral wind by crabbing such that aerodynamic angle sideslip is almost zero.5

For following 3D paths (including 2D paths at a constant altitude), we will
employ a higher-dimensional 4D vector field. The generalized 4D velocity vector
of the aircraft is defined as ξ̇ = (ẋ, ẏ, ż, ẇ)>, where (ẋ, ẏ) is the actual ground
velocity of the aircraft, ż is the vertical speed, and ẇ is the velocity in the additional
coordinate to be determined. Now we present the control algorithm design; that
is, the design of uθ and uz in (9.19) with the following proposition:

Proposition 9.23. Suppose the 3D physical desired path phyP ⊆ R3 to follow is
parameterized by (9.15). Then a corresponding 4D vector field χ : R4 → R4 can be
constructed by Theorem 9.21. Assume that the vector field satisfies χ1(ξ)

2 + χ2(ξ)
2 6= 0

for ξ ∈ R4, where χi denotes the i-th entry of χ. Consider the model (9.19), and let the
dynamics of the additional coordinate w be

ẇ =
vχ4√

χ2
1 + χ2

2

. (9.20)

Let the angular velocity control input uθ and the climbing velocity input uz be

uθ =

( −1
‖χp‖

χ̂p>EJ(χp)ξ̇

)
︸ ︷︷ ︸

:=θ̇d

−kθ ĥ>Eχ̂p, (9.21a)

uz =
vχ3√

χ2
1 + χ2

2

, (9.21b)

where kθ > 0 is a gain constant, h = (cos θ, sin θ)>, E =
[ 0 −1

1 0

]
, χp = (χ̂1, χ̂2)

> and
J(χp) is the Jacobian matrix of χp with respect to the generalized position ξ = (x, y, z, w)

and ξ̇ = (ẋ, ẏ, ż, ẇ)> is the generalized velocity. Let the angle difference directed from χ̂p

to ĥ be denoted by β ∈ (−π, π]. If the initial angle difference satisfies β(0) ∈ (−π, π),
then it will vanish asymptotically (i.e., β(t) → 0). Furthermore, the actual robot
trajectory (x(t), y(t), z(t)) will converge to the physical desired path phyP asymptotically
as t→ ∞.

Proof. Let

χ′ :=
1√

χ2
1 + χ2

2

χ

5 Crabbing happens when the inertial velocity makes an angle with the nose heading due to wind.
Slipping happens when the aerodynamic velocity vector makes an angle (sideslip) with the body
ZX plane. Slipping is (almost) always undesirable because it degrades aerodynamic performance.
Crabbing is not an issue for the aircraft.
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be the scaled 4D vector field. We aim to let the generalized robot velocity
ξ̇ = (ẋ, ẏ, ż, ẇ)> eventually align with and point towards the same direction as
the scaled vector field. Specifically, let the orientation error be defined by

eori(t) = ξ̇ − vχ′ (9.20),(9.21b)
= v


cos θ − χ′

1

sin θ − χ′
2

0

0

 =

[
h− g

0

]
∈ R4,

where h = (cos θ, sin θ)> and g = (χ′1, χ′
2)
>. It is obvious that eori → 0 if and only

if h− g→ 0. Therefore, it suffices to show that the orientation of h asymptotically
aligns with that of g. Note that

χ̂p =
1√

χ̂2
1 + χ̂2

2

[
χ̂1

χ̂2

]
=

1√
χ2

1 + χ2
2

[
χ1

χ2

]
= g

and ĥ = h. Therefore, we can define a new orientation error as eor := ĥ− χ̂p ∈ R2.
Choose the Lyapunov function candidate V = 1/2 e>oreor and its time derivative is

V̇ = ė>oreor = (θ̇Eĥ− θ̇dEχ̂p)
>
(ĥ− χ̂p)

= (θ̇ − θ̇d)ĥ>Eχ̂p (9.21a)
= −kθ(ĥ>Eχ̂p)2,

(9.22)

which is negative semi-definite. The second equation makes use of the identities:
˙̂h = θ̇Eĥ and ˙̂χp = θ̇dEχ̂p, where θ̇d is defined in (9.21a). The third equation
is derived by exploiting the facts that E> = −E and a>Ea = 0 for any vector
a ∈ R2. Note that V̇ = 0 if and only if the angle difference between ĥ and
χ̂p is β = 0 or β = π. Since it is assumed that the initial angle difference
β(t = 0) 6= π, it follows that V̇(t = 0) < 0, and thus there exists a sufficiently
small ε > 0 such that V(t = ε) < V(t = 0). It can be shown by contradiction
that |β(t)| is monotonically decreasing with respect to time t 6. By (9.22), one
observes that |β(t)| and V(t) tends to 0, implying that the generalized velocity
ξ̇ will converge asymptotically to the scaled vector field vχ′. Note that the
integral curves of the state-dependent positive scaled vector field χ′ has the same
convergence results as those for the original vector field χ [25, Proposition 1.14].
Therefore, the generalized trajectory (x(t), y(t), z(t), w(t)) will converge to the
higher-dimensional desired path hghP in (9.17). From Theorem 9.21, the actual

6 Suppose there exist 0 < t1 < t2 such that |β(t1)| < |β(t2)|. It can be calculated that V(t) =
1− cos β(t), and thus V(t1) < V(t2), contradicting the decreasing property of V̇. Thus |β(t)| is
indeed monotonically decreasing.
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robot trajectory (i.e., the projected transformed trajectory) (x(t), y(t), z(t)) will
converge to the physical desired path phyP asymptotically as t→ ∞.

We set our aircraft to fly at a constant airspeed (around 12m/s) and a constant
altitude; therefore, we have a bounded speed v (estimated onboard with an
Inertial Navigation System) when we account for the wind. For tracking 3D
paths, the aircraft will nose down or change the propeller’s revolutions per
minute (r.p.m.); nevertheless, the airspeed is also bounded between 9m/s and
16m/s. Note that both ground and airspeed are not control/guiding signals;
therefore, we do not face any saturation problems regarding these variables.

9.6.3 Accommodating the guidance to the aircraft’s dynamics

An arbitrary function φi(·) in (9.16), which depends on a specific parametrization
fi(·), may result in a highly sensitive coordinate w. This can lead to considerable
vibrations of the guidance signals, due to noisy sensor readings or disturbances
of the position, that cannot be tracked effectively by the aircraft.

We propose two approaches, which can be combined to mitigate this practical
effect. The first one is to re-parameterize the equations for the 3D desired
path phyP ; this does not affect the convergence result. Suppose phyP is re-
parameterized by

x = f1
(

g(w)
)
, y = f2

(
g(w)

)
, z = f3

(
g(w)

)
,

where g : R → R is a smooth bijection with non-zero derivative (i.e., dg
dw (w) 6= 0

for all w ∈ R). A simple example of g is g(w) = βw, where β is a positive
constant. This is adopted for the experiments. Let φ1, φ2, and φ3 be chosen as
in (9.16), then the first term of the higher-dimensional vector field becomes (for
simplicity, the arguments are omitted)

∧(∇φ1,∇φ2,∇φ3) = −
(

d f1

dg
dg
dw

,
d f2

dg
dg
dw

,
d f3

dg
dg
dw

, 1
)>

.

To reduce the effect of the “virtual speed” from the fourth coordinate of the
equation above, the “gain” dg

dw can be chosen large such that (d f1
dg ·

dg
dw )

2 + (d f2
dg ·

dg
dw )

2 + (d f3
dg ·

dg
dw )

2 � 1, which implies that

‖∇φ1 ×∇φ2 ×∇φ3‖ ≈
∣∣∣∣ dg
dw

∣∣∣∣
√
(

d f1

dg
)2 + (

d f2

dg
)2 + (

d f3

dg
)2.
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However, from the analytic expression of the vector field

χ =


− dg

dw ·
d f1
dg − k1φ1

− dg
dw ·

d f2
dg − k2φ2

− dg
dw ·

d f3
dg − k3φ1

−1 + dg
dw

(
k1φ1

d f1
dg + k2φ2

d f2
dg + k3φ3

d f3
dg

)

 ,

one observes that, when ‖(φ1, φ2, φ3)‖ is large, (i.e., the aircraft is far from the
desired path), the additional coordinate of the vector has also been enlarged
approximately by a factor of dg

dw . Thus, the “gain” | dg
dw | should not be chosen too

large.
The second approach is to scale down the functions φi. That is, the equations

(9.16) are changed to
φ̃i(x, y, z, w) = Lφi, i = 1, 2, 3,

where L ∈ (0, 1). The corresponding 3D vector field is thus changed to

χ̃ = L


−L2 d f1

dw − k1φ1

−L2 d f2
dw − k2φ2

−L2 d f3
dw − k3φ3

−L2 + k1φ1
d f1
dw + k2φ2

d f1
dw + k3φ3

d f1
dw

 .

The new guiding vector field is scaled down; thus, it helps to lower the sensitivity
of the additional coordinate w.

9.6.4 The 2D trefoil curve

We start with following a 2D self-intersecting desired path, the trefoil curve, at a
constant altitude zo = 50m over the ground level. The parametric equations of
the trefoil curve are given by

f1(w) = cos(βw ω1)(a cos(βw ω2) + b)

f2(w) = sin(βw ω1)(a cos(βw ω2) + b)

f3(w) = 0,

where we have set β = dg
dw = 0.45 (the “gain" introduced in Section 9.6.3),

ω1 = 0.02, ω2 = 0.03, a = 80, and b = 160. In order to fit into the available flying
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Figure 9.3: Flight results I. (a) illustrate the trajectories of the aircraft, which flies at a
constant altitude of 50 meters. The blue dot, representing ( f1(w), f2(w)),
moves forward but waits for the aircraft at time t = 321. Afterward, the aircraft
converges to the desired path as the first two plots in (b) indicate with φ1 and
φ2 fluctuating around 0. The third plot in (b) shows the evolution of the virtual
coordinate w, of which the grow rate varies as it is in the closed-loop with the
aircraft’s position to facilitate the path convergence.
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Figure 9.4: The screenshot of the ground control station corresponding to Fig. 9.3. The
green circle is the stand-by trajectory before the aircraft starts following the
trefoil curve. The blue line is the 2D trajectory of the aircraft.

space, these parametric equations have been rotated by α and shifted adequately
by (xo, yo) in the autopilot; i.e.,

f ∗1 (w) = cos(α) f1(w)− sin(α) f2(w) + xo

f ∗2 (w) = sin(α) f1(w) + cos(α) f2(w) + yo

f ∗3 (w) = f3(w) + zo.

Note that the same affine transformation must be done for both f ′i and f ′′i (needed
for the Jacobian of χ as we will see shortly). In particular, for the presented flight,
we set xo = 79, yo = −68.10 and zo = 50 meters and α = 0. We set the scaling
factor L = 0.1 for the construction of φ̃i as in Section 9.6.3, and we choose the
gains k1 = k2 = k3 = 0.002. We finally set kθ = 1 for the control/guidance signal
uθ in Proposition 9.23.

Note that for computing all the control signals (9.21), we need fi(w) and their
derivatives f ′i (w) and f ′′i (w) with respect to w. For the sake of completeness, we
provide the Jacobian J(χp) in (9.21a) which is given by

J(χp) = FJ(χ̂) = F(I − χ̂χ̂>)J(χ)/‖χ‖,

where F =
[

1 0 0 0
0 1 0 0

]
, and J(χ) is shown below

J(χ) =

L


−k1L 0 0 − f ′′1 (βw)L2β2 + k1βL f ′1(βw)

0 −k2L 0 − f ′′2 (βw)L2β2 + k2βL f ′2(βw)

0 0 −k3L − f ′′3 (βw)L2β2 + k3βL f ′3(βw)

k1βL f ′1(βw) k2βL f ′2(βw) k3βL f ′3(βw) β2 ∑3
i=1
[
kiφi f ′′i (βw)− kiL f ′2i (βw)

]


The flight results for the trefoil curve are shown in Figure 9.3.
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Figure 9.5: Flight results II. (a) illustrates the trajectories of the aircraft. The blue dot,
representing ( f1(w), f2(w), f3(w)), moves forward quickly but waits for the
aircraft at time t = 204. This quick movement is due to the fast variation
of w in the beginning (see the fourth plot in (b)). Afterward, the vehicle
converges to the desired path as the first three plots in (b) indicate with
φ1, φ2, and φ3 fluctuating around 0. The aircraft has been trimmed to fly at a
constant altitude, but the desired path requires the vehicle to track a sinusoidal
ascending/descending trajectory, and any disturbance (e.g., unsteady wind)
makes the aircraft sensitive to track accurately a climbing/descending speed.
In addition, the Lissajous curve demands aggressive turnings slightly beyond
the capabilities of the aircraft when the aircraft descends and achieves the
maximum speed. The fourth plot in (b) shows the evolution of the virtual
coordinate w, of which the grow rate varies as it is in the closed-loop with the
aircraft’s position to facilitate the path convergence.
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Figure 9.6: The screenshot of the ground control station corresponding to Fig. 9.5. The
green circle is the stand-by trajectory before the aircraft starts following the
Lissajous curve. The blue line is the 2D trajectory of the aircraft. In particular,
the aircraft passes by the middle waypoint corresponding to the highest point of
the desired path.

9.6.5 The 3D Lissajous curve

We consider the 3D Lissajous curve described as below:

f1(w) = cx cos(βw ωx + dx)

f2(w) = cy cos(βw ωy + dy)

f3(w) = cz cos(βw ωz + dz),

where we have set β = dg
dw = 0.01, ωx = 1, ωy = ωz = 2, cx = cy = 225, cz = −20,

dx = dz = 0, and dy = π/2. This selection of parameters gives us an eight-shaped
desired path that is bent along the vertical axis. As with the trefoil curve, we
have added an affine transformation of fi(w), f ′i (w) and f ′′i (w) in the autopilot
to fit the Lissajous curve into the available flying space. In particular, we have
set xo = 79, yo = −68.10, zo = 50, α = 0.66). Finally, for the construction of φ̃i, we
have chosen L = 0.1, k1 = k2 = 0.002 and k3 = 0.0025. We finally set kθ = 1 for
the control/guiding signal uθ in Proposition 9.23. We show the flight results in
Figure 9.5.

9.7 discussion: path following or trajectory
tracking?

In this section, we show that our proposed higher-dimensional VF-PF algorithm
is an extension that combines elements from both conventional VF-PF algorithms
(e.g., [63], see Remark 9.3) and trajectory tracking algorithms (e.g., [131, p. 506]).
While our generated guiding vector field is the standard output for the path-
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following approach, we will argue that our algorithm can also be seen as a
fair extension of a trajectory tracking approach. Therefore, our algorithm, to
some extent, combines and extends elements from both approaches. For ease of
explanation and without loss of generality, we restrict our focus to a physical
planar desired path in R2; that is, phyP ⊆ R2.

Compared to trajectory tracking algorithms, a similarity exists in the sense
that the additional coordinate w in the proposed VF-PF algorithms acts like the
time variable in trajectory tracking algorithms. However, our approach is an
extension in the sense that the time-like variable is in fact state-dependent. In
trajectory tracking algorithms, a desired trajectory

(
xd(t), yd(t)

)
is given. Then,

at any time instant t, the algorithm aims to decrease the distance to the desired
trajectory point

(
xd(t), yd(t)

)
, which moves as time t advances. Note that the

dynamics of the desired trajectory point
(

xd(t), yd(t)
)

is open-loop in the sense
that it does not depend on the current states of the robot, but only depends
on time t. From (9.16), if we let φi = 0, i = 1, 2, then we may call the point(

f1(w(ξ(t))), f2(w(ξ(t)))
)

the guiding point, since it always stays on the desired
path and may be regarded as the counterpart of the desired trajectory point in
trajectory tracking algorithms. But as we will show later, the guiding point is
essentially different from the desired trajectory point. Note that the guiding point(

f1(w(ξ(t))), f2(w(ξ(t)))
)

in our VF-PF algorithm depends on the evolution of
the additional coordinate w

(
ξ(t)

)
, of which the dynamics is state-dependent

as shown in (9.20). This might be roughly regarded as a closed-loop version of
the desired trajectory point. An intuitive consequence of this difference is that the
desired trajectory point

(
xd(t), yd(t)

)
in trajectory tracking algorithms always moves

unidirectionally along the desired trajectory as t monotonically increases, while the
guiding point can move bidirectionally along the desired path, subject to the current
state (i.e., the robot position). In fact, when the initial position of the guiding point(

f1(w(ξ(0))), f2(w(ξ(0)))
)

is far from the initial position of the robot, the guiding
point “proactively” moves towards the robot along the desired path to accelerate
the path-following process. This feature, along with better robustness against
perturbation in some cases, are experimentally studied in our previous work
[164, Section VII]. To illustrate this closed-loop feature more intuitively, after the
robot has successfully followed the desired path, we manually move the robot
far away from the desired path and keep it stationary (to mimic the situation
of erroneous localization and operation failure of the robot). As is clear in the
supplementary video7, although the robot is kept stationary, the guiding point(

f1(w(ξ(t))), f2(w(ξ(t)))
)

can still move in the reverse direction to approach the
robot along the desired path such that the norm of the path-following error
decreases, and the guiding point eventually stops at some place on the desired
path. After that, the guiding point does not move until the robot is released to
move again.

7 http://tiny.cc/video_tro21yao

http://tiny.cc/video_tro21yao
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In existing VF-PF algorithms, a two-dimensional vector field on R2 is created
for guiding the robot movement (see Remark 9.3). However, as we aim to create
a higher-dimensional (i.e., three-dimensional) vector field, our approach can
be roughly regarded as utilizing an infinite number of layers of projected two-
dimensional vector fields, and thus might be seen as a dynamic two-dimensional
vector field. The dynamic property is due to the dynamics of the additional
coordinate w. For example, consider a circular desired path parameterized by

x = f1(w) = cos(4w) y = f2(w) = sin(4w),

where w ∈ R is the parameter. In conventional VF-PF algorithms, a 2D vector field
can be created, as shown in Fig. 9.1a, but there exists a singular point at the center
of the circle. Nevertheless, using our approach, we can generate a singularity-free
3D vector field, as illustrated in Fig. 9.7. For clarity of visualization, we plot the
3D vectors, which originate from three planes where the w values are 0, 0.6, and
1.4, respectively. For each value of the additional coordinate w, we can obtain
a projected 2D vector field, as shown in Fig. 9.8. Therefore, we can observe
that these 2D vector fields change dynamically as w varies. As a result of the
dynamics of w, the guiding point

(
f1(w(ξ(t))), f2(w(ξ(t)))

)
moves along the 2D

desired path (not necessarily unidirectionally). Again, we note that this point is
not the same as the desired trajectory point in trajectory tracking algorithms since
the integral curves of the 2D vector field do not converge to this point, as can be
seen graphically from Fig. 9.8 or analytically from the expression of the vector
field in (9.5): the second term leads to convergence to the guiding point, while the
first term “deviates” this convergence, since it controls the propagation along the
higher-dimensional desired path.

In many existing VF-PF algorithms, the desired path is usually not parameterized
but is described by the intersection of hyper-surfaces, while the latter case
might be restrictive in describing more complicated desired paths. However, our
approach enables the possibility to use a parameterized desired path directly
in the design of a higher-dimensional vector field. Our approach thus extends
the flexibility of conventional VF-PF algorithms. The desired path can now be
described by either the intersection of hyper-surfaces or parameterized functions.
In the latter case, the parametric equations can be easily converted using (9.15),
(9.16) and (9.17) and leads to a higher-dimensional desired path and singularity-
free guiding vector field. Theoretically, the parametrization is not instrumental,
since it is only utilized to derive the expressions of functions φi, of which the
zero-level sets are interpreted as hyper-surfaces. The subsequent derivation of
the vector field is based on φi, independent of the specific parametrization of the
desired path.



9.8 an alternative proof 197

Figure 9.7: Three layers of the 3D vector field corresponding to a circle. The solid line is the
2D desired path while the dashed line is the corresponding 3D (unbounded)
desired path. Three layers of the 3D vector field evaluated at w = 0, 0.6, 1.4
respectively are illustrated.

9.8 an alternative proof
In this section, we give an alternative proof of Proposition 9.10. Given an
autonomous differential equation ẋ(t) = f (x(t)), where f is continuously differ-
entiable in x, and let t 7→ Ψ(t, x0) be the solution to the differential equation with
the initial condition Ψ(0, x0) = x0, then Ψ is a flow [25]. In the literature, the
notation Ψt(x0), which is adopted in the sequel, is often used in place of Ψ(t, x0).
To assist the proof of Proposition 9.10, we state a more general result in the
following lemma regarding any time-invariant autonomous system that admits
a (locally) asymptotically stable limit cycle. Note that similar to the definition
of Lyapunov stability of an equilibrium point [66, Chapter 4], a limit cycle L is
(locally) asymptotically stable if for every neighborhood U ⊇ L of the limit cycle
L, there exists a smaller neighborhood V ⊆ U , such that every trajectory starting
from V always stays within U and L is locally attractive.

Lemma 9.24 (Asymptotically stable limit cycles are not GAS). Consider an au-
tonomous differential equation ẋ(t) = f (x(t)), where f : Rn → Rn is continuously
differentiable in x. Suppose there is a (locally) asymptotically stable limit cycle L ⊆ Rn,
then global convergence of trajectories to the limit cycle is not possible; namely, the
domain of attraction of the limit cycle cannot be Rn. In other words, the limit cycle
cannot be globally asymptotically stable (GAS) in Rn.

Proof. We prove by contradiction: Suppose that global convergence to the limit
cycle L holds. Since the limit cycle is compact, it is an embedded submanifold
in Rn [77, Proposition 5.21]. So we can take a tubular neighborhood O ⊇ L of
the limit cycle [77, Theorem 6.24]. Then due to the asymptotic stability of the
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Figure 9.8: The projected 2D vector field corresponding to w = 0, 0.6, 1.4 respectively. The
solid line is the projected 2D desired path. The solid dots represent the guiding
point

(
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)
.

limit cycle, there exists a smaller neighborhood U ⊆ O of the limit cycle such that
every trajectory starting from U will remain within the tubular neighborhood O
perpetually. Since the limit cycle is compact, we can find a closed ball B ⊆ Rn

centered at 0 ∈ Rn sufficiently large such that the limit cycle lies in its interior
(i.e., L ⊆ B). Due to the global convergence assumption, for any point w ∈ B,
there exists a time instant Tw > 0 such that ΨTw(w) ∈ U , where Ψ denotes the
flow of the differential equation ẋ = f (x). Due to the continuous dependence
on initial conditions [66, Theorem 3.5], there exists an open set Vw 3 w, such
that ΨTw(Vw) ⊆ U . Therefore, according to the uniqueness of solutions to the
differential equation (see Theorem 2.1) and the asymptotic stability discussed
before, we further have Ψt(Vw) ⊆ O for all t ≥ Tw. Thus, for every point w ∈ B,
we can associate an open set Vw and a time instant Tw as discussed before. Since
D := {Vw ⊆ Rn : w ∈ B} is an open cover of the compact ball B, there exists a
finite number of points wi ∈ B, i = 1, . . . , k, and Vwi ∈ D, such that

⋃k
i=1 Vwi ⊇ B

[140, Theorem 1.5.8]. Thus, we can take T > maxi=1,...,k{Twi}, and therefore, we
have ΨT(B) ⊆ O.

Let r : O → L be a retraction8 of O onto L; i.e., r ◦ iL = idL, where iL : L → O
is the inclusion map of L in O and id is the identity map. Now let i′L : L → B be
another inclusion map, and note that for any t ∈ R, Ψt(·) is a diffeomorphism
of L [25, p. 13]. Then it is easy to check that idL = Ψ−T ◦ r ◦ΨT ◦ i′L, where we
view ΨT as a map from B to O and Ψ−T a map from L to L. It is conventional
to use (·)∗ and π1(·) to denote the homomorphism and the fundamental group
respectively. Then

(idL)∗ = (Ψ−T ◦ r ◦ΨT ◦ i′L)∗

= (Ψ−T)∗ ◦ (r)∗ ◦ (ΨT)∗ ◦ (i′L)∗,
(9.23)

8 The existence of r is guaranteed by Proposition 6.25 in [77].
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where (idL)∗ : π1(L) → π1(L), (i′L)∗ : π1(L) → π1(B), (ΨT)∗ : π1(B) →
π1(O), r∗ : π1(O) → π1(L) and (Ψ−T)∗ : π1(L) → π1(L) are the homomor-
phisms of fundamental groups induced by the corresponding maps [77, Proposi-
tion A.64, A.65]. Since B is contractible and π1(B) ∼= {0}, where ∼= denotes the
isomorphic relation, both (i′L)∗ and (ΨT)∗ are zero morphisms, and so is the com-
position (Ψ−T)∗ ◦ (r)∗ ◦ (ΨT)∗ ◦ (i′L)∗. But this contradicts with the left-hand side
of (9.23), where (idL)∗ is the identity map (and an isomorphism) of π1(L) ∼= Z.
The contradiction implies that global convergence is not possible.

Based on Lemma 9.24, we can prove Proposition 9.10.

Proof of Proposition 9.10. We consider the autonomous systems (9.9). Without loss
of generality, we assume that the flow of (9.9) is complete, since otherwise we can
replace the vector field χ by χ/(1 + ‖χ‖) without changing the phase portrait
[25, Proposition 1.14].

Given α > 0, we define a neighborhood of the desired path P by

Eα = {ξ ∈ Rn : ‖e(ξ)‖ < α}. (9.24)

Therefore, the value of ‖e(·)‖ encodes the distance to the desired path in view of
the definition of P in (9.6). From Lemma 5.1, we have N>χ = N>(⊥φ − NKe) =
−N>NKe. We define a Lyapunov function candidate

V(e) =
1
2

e>Ke, (9.25)

and take the time derivative of it, obtaining

V̇(e) =
1
2
(ė>Ke + e>Kė)

=
1
2
(χ>NKe + e>KN>χ)

= −e>Qe = −‖NKe‖2 ≤ 0,

(9.26)

where the (n− 1)× (n− 1) matrix

Q(ξ) = K>N>(ξ)N(ξ)K (9.27)

is positive semidefinite. Based on the LaSalle’s invariance principle (Theorem 2.6),
one can show that the desired path P is the limit cycle of (9.9) by construction,
and that P is Lyapunov stable. The claim then easily follows from Lemma
9.24.
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9.9 conclusions
In this chapter, we first show that the integral curves of a time-invariant con-
tinuously differential vector field as in (9.2) cannot guarantee global converge
to desired paths which are simple closed (i.e., homeomorphic to the unit circle)
or self-intersecting. Motivated by this general topological result, we propose a
novel approach to create unbounded desired paths from simple closed or self-
intersecting ones, and construct a singularity-free higher-dimensional guiding
vector field. One of the advantages of this approach is that global convergence to
the desired paths, which can be even self-intersecting, is now rigorously guaran-
teed. This is achieved by the introduction of a transformation operator and the
extended dynamics. Another advantage is that, given a parameterized desired
path, we can easily describe the hyper-surfaces as the zero-level set of some im-
plicit functions, and then the proposed vector field on a higher-dimensional space
can be directly constructed. This increases the applicability of conventional VF-PF

algorithms. In addition, we highlight five features of our approach, with rigorous
theoretic guarantees. We also show that our approach is a combined extension of
both conventional VF-PF algorithms and trajectory tracking algorithms. Finally, we
conduct outdoor experiments with a fixed-wing aircraft under wind perturbation
to validate the theoretical results and demonstrate the practical effectiveness for
complex robotic systems.



10 G U I D I N G V E C TO R F I E L D S F O R
M U LT I - R O B OT C O O R D I N AT E D
N AV I G AT I O N

Tasks requiring repetitive execution, such as environmental monitoring
and area patrolling, are more efficiently accomplished by a group of coordi-
nated robots, which are equipped onboard with path-following navigation
algorithms. Among these algorithms, those based on guiding vector fields
have been shown to achieve outstanding performance, but most of them are
designed for the navigation of one single robot.

In this chapter, we propose coordinating guiding vector fields for the
distributed motion coordination and navigation of a group of an arbitrary
number of robots on different desired paths or surfaces. The motion coor-
dination is realized implicitly by controlling additional virtual coordinates
integrated with the original guiding vector field, and these virtual coordi-
nates turn out to be the parameters defining the desired paths or surfaces.
Therefore, after motion coordination is quantified by desired parametric dis-
placements, rigorous mathematical guarantees underpinned by dynamical
systems theory and Lyapunov theory are provided for the effective distributed
motion coordination and navigation of robots on paths or surfaces from all
initial positions. A control algorithm is further derived from the coordinating
guiding vector field for a Dubins-car-like model with actuation saturation.

Our algorithm excels in its flexibility to deal with a wide range of paths
and surfaces, its distributed and scalable nature and its low cost in communi-
cation and computation, among others. Extensive simulations and fixed-wing
aircraft outdoor experiments validate the effectiveness and robustness of our
algorithm.

This chapter is based on

• W. Yao, H. G. de Marina, Z. Sun, and M. Cao, “Distributed coordinated path following using
guiding vector fields,” in IEEE International Conference on Robotics and Automation (ICRA), 2021.

• W. Yao, H. G. de Marina, Z. Sun, and M. Cao, “Guiding vector fields for multi-robot coordinated
navigation,” 2021, Submitted.
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10.1 introduction
Compared with a single robot, a multi-robot system is usually more efficient in
accomplishing tasks associated with vast areas or volumes, such as environmental
monitoring and area patrolling. Nevertheless, to reliably and systematically
coordinate robots in a large multi-robot system without a central nexus is one of
the grand challenges in robotics [155]. A fundamental question of this challenge is
how to design a mechanism such that multiple robots are able to accurately follow
possibly different desired paths and coordinate their motions in a distributed
fashion, with the resulting formation satisfying some geometric or parametric
constraints. In this chapter, we propose a coordinating guiding vector field with
virtual dimensions to guide an arbitrary number of robots to realize motion
coordination on possibly different desired paths or surfaces in a distributed way
through local information exchange. The proposed guiding vector field has many
appealing features such as ensuring rigorous guarantees of motion coordination
and path/surface convergence.

10.1.1 Related work

Single-robot path-following capability is fundamental in mobile robotics appli-
cations, and many algorithms have been proposed and widely studied [137].
It is concluded by numerical simulations in [137] that those algorithms based
on guiding vector fields achieve relatively high path-following accuracy while
they require less control effort, compared with several other tested algorithms,
such as LQR-based ones [115] and nonlinear guidance laws (NLGL) [111]. This
conclusion is experimentally supported by [22]. Despite the performance advan-
tages, these vector field guided path-following algorithms are mostly designed
for a single robot, while the extension for a multi-robot system is relatively less
studied. In fact, to the best of our knowledge, there are only a few studies
exploiting a guiding vector field for distributed multi-robot motion coordination.
In [32], the guiding vector field proposed in [63] is combined with a distributed
algorithm to dynamically change the radii of circular paths such that multiple
fixed-wing aircraft flying at a constant speed can eventually follow the same
circular path and keep pre-defined inter-robot distances. A different guiding
vector field is derived in [102] based on various potential functions for multiple
robots to move on common paths such as a circle or a straight line. Another
work [114] presents a distributed control law for a number of robots to circulate a
closed curve described in a specific form in 3D.

Without employing a guiding vector field, various algorithms are proposed
in the literature for multi-robot coordinated path-following. A virtual structure
is utilized in [48] for multiple robots to coordinate their motions while they
follow predefined paths. As each robot needs to broadcast its states and reference
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trajectories to other robots, the communication overhead increases as the number
of robots increases. A theoretical study is illustrated in [169] considering planar
simple closed curves and unit-speed particles. In [123], the desired motion
coordination among robots are generated by a linear exo-system, and an output-
regulation controller is implemented on some robots while others are controlled
through local interactions. Many other works study multi-robot distributed path-
following on planar simple desired paths (e.g., a straight line), such as [20], [23],
[38], [117], [148]. The papers [95], [96] design distributed controllers for robots
characterized by the single-integrator or double-integrator model such that they
can generate 2D desired geometric patterns composed of simple closed curves or
circulate a 2D closed curve.

Circular formation control and circumnavigation control, which have been ex-
tensively studied, can be regarded as specialized cases of multi-robot coordinated
path-following control. In the circular formation control problem, robots are re-
quired to distribute along a circle and maintain some desired arc distances using
local interactions [60], [125], [135], [138], [144], [145]. Motivated by some specific
applications, such as entrapment of a hostile target, an additional requirement for
all robots to move persistently along the circle is imposed in a circumnavigation
control problem [34], [39], [43], [129], [163], [170]. Nevertheless, as clear from
their problem formulations, these studies only take into account circular paths
mostly in a 2D plane. Although it is possible to extend these studies to consider
other closed paths, this might require some continuous transformation between
paths, which is a nontrivial task in general.

10.1.2 Contributions

We propose a coordinating guiding vector field for a multi-robot system to
achieve global convergence to desired paths or surfaces while their motions
are coordinated in a distributed way via local communication. Based on the
coordinating guiding vector field, a saturated control algorithm is then designed
for a nonholonomic Dubins-car-like model. Specifically, we consider desired paths
and surfaces defined as parametric equations such that the motion coordination
among robots can be quantified by relative parametric differences. Starting
from the guiding vector field for single-robot path following [50], [63], we then
consider multiple robots following different desired paths or maneuvering on
different surfaces, where the robot motions are coordinated by the coordinating
guiding vector fields that are extended with virtual coordinates and coupled
via a consensus term [108]. The consensus term is related to virtual coordinates
of neighboring robots encoded in an undirected communication graph. These
new guiding vector fields implicitly and effectively control the relative parametric
separation among robots.
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Our approach is appealing in several aspects: 1) There are rigorous mathe-
matical guarantees on the global convergence of robots’ trajectories converging
to the desired paths or surfaces and achieving the motion coordination. 2) Our
approach can deal with complex paths, such as self-intersecting, non-closed, and
non-convex ones in an n-dimensional configuration space, and applicable for
arbitrary surfaces described by parametric equations. The approach can also be
naturally extended for higher-dimensional manifolds (e.g., a cube). 3) Given a
fixed communication frequency, the communication cost is low, since every two
neighboring robots only need to receive and transmit the virtual coordinates,
of which the number is equal to that of the path or surface parameters. The
approach is also computationally cheap and is suitable for real-time applications
since online optimization is not required. 4) The approach is distributed and
scalable, so the number of robots can be arbitrarily large. 5) The effectiveness of
our algorithm is verified by simulations with a large multi-robot system and by
outdoor experiments with real fixed-wing aircraft. Thus, our algorithm is robust
against wind perturbation, localization inaccuracy and actuator saturation. 6) We
also demonstrate that our algorithm is promising in applications such as area or
volume coverage tasks by exploiting a 2D or 3D Lissajous curve with irrational
coefficients.

The remainder of this chapter is organized as follows. Section 10.2 introduces
the preliminaries on graph theory and guiding vector fields for path following.
Then Section 10.3 elaborates on how to extend the guiding vector field for multi-
robot distributed motion coordination and navigation on desired paths. The
theoretical results are further extended to deal with coordinated maneuvering
on parametric surfaces in Section 10.4. We also discuss how the coordinating
guiding vector field can be seamlessly integrated with a safety barrier certificate
to address the collision issue in Section 10.5. Next, we consider a realistic robot
model for fixed-wing aircraft and derive a control law from the coordinating
guiding vector field in Section 10.6. Moreover, extensive simulation examples
and experiments with fixed-wing aircraft are carried out in Section 10.7. Finally,
Section 10.8 concludes the chapter.

10.2 preliminaries

10.2.1 Notations

The set of integers {m ∈ Z : i ≤ m ≤ j} is denoted by Z
j
i . We use boldface for a

vector v ∈ Rn, and its j-th entry is denoted by vj for j ∈ Zn
1 . Consider a system

consisting of N robots. Any quantity associated with the i-th robot is symbolized
by the superscript (·)[i]. For example, the notation u[i] ∈ Rn denotes a vector
associated with the i-th robot for i ∈ ZN

1 , and the j-th entry of it is denoted by u[i]
j
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for j ∈ Zn
1 (note that u[i]

j is not boldfaced since it is a scalar). The notation diag{·}
denotes a diagonal (block) matrix obtained by putting vectors or matrices on the
diagonal. If A is a finite set, then |A| denotes its cardinality (i.e., the number of
elements in the set).

10.2.2 Graph theory

This subsection is based on [88]. A finite, undirected graph (or graph for short) is
a set-theoretic object G = (V , E), where the vertex set V := {1, . . . , N} contains a
finite set of elements, called vertices, and the edge set E is a subset of V × V , of
which the elements are denoted by (i, j), representing the adjacent relationship
between vertices i and j for i, j ∈ V . The k-th edge is denoted by Ek = (Ehead

k , E tail
k ),

where Ehead
k ∈ V and E tail

k ∈ V are the head and tail of the edge, respectively. The
set of neighboring robots of robot i is denoted by Ni := {j ∈ V : (i, j) ∈ E}. The
graph G is connected if there is a path between any pair of vertices in V . The
adjacency matrix A(G) of the undirected graph G is the symmetric N × N matrix
encoding the adjacency relationships of vertices; that is, [A(G)]ij = 1 if (i, j) ∈ E
and [A(G)]ij = 0 otherwise. The Laplacian matrix L(G) of G is the N × N matrix
defined by [L(G)]ij = −aij for i 6= j and [L(G)]ii = ∑N

k=1 aik for i ∈ ZN
1 , where aij

is the ij-th entry of the adjacency matrix. For an undirected graph, we define the
elements of the incidence matrix B ∈ R|V|×|E| by bik = +1 if i = E tail

k , bik = −1 if
i = Ehead

k , and bik = 0 otherwise. The N-cycle graph CN = ({1, . . . , N}, EC) is the
graph where the edge set EC contains edges (i, j) with i− j = ±1 mod N.

10.2.3 Guiding vector field with a virtual coordinate for a single robot

Guiding vector fields with virtual coordinates for robot navigation enjoy many
features, such as guaranteeing global convergence to the desired path and en-
abling self-intersected desired path following (see Chapter 9). We present here a
brief introduction. Suppose the desired path phyP is parameterized by

x1 = f1(w), . . . , xn = fn(w),

where xj is the j-th coordinate, w ∈ R is the parameter of the path and f j is twice
continuously differentiable (i.e., f j ∈ C2), for j ∈ Zn

1 . To derive a corresponding
guiding vector field for the desired path, we need to describe the desired path as
the intersection of n hyper-surfaces [50], [63], [74], [157]. To this end, taking w
as an additional argument, we define n level functions φj : Rn+1 → R as follows:
φ1(ξ) = x1 − f1(w), . . . , φn(ξ) = xn − fn(w), where ξ = (x1, . . . , xn, w) ∈ Rn+1 is
the generalized coordinate with an additional (virtual) coordinate w. Therefore,
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the desired path with an additional coordinate is the intersection of the hyper-
surfaces described by the zero-level set of these functions; that is,

hghP := {ξ ∈ Rn+1 : φj(ξ) = 0, j ∈ Zn
1}.

The projection of the higher-dimensional hghP onto the hyper-plane spanned
by the first n coordinates is the original desired path phyP , so we can use the
higher-dimensional guiding vector field χ : Rn+1 → Rn+1 corresponding to hghP
to follow the original desired path phyP by using a projection technique (see
Chapter 9), where the vector field χ is defined by

χ(ξ) = ×
(
∇φ1, . . . ,∇φn

)
−

n

∑
j=1

k jφj∇φj, (10.1)

where∇φj ∈ Rn+1 is the gradient of φj with respect to its generalized coordinate
ξ, k j are positive gains, and the first term is the wedge product [45, Chapter 7.2]
of all the gradients ∇φj ∈ Rn+1, j ∈ Zn

1 (it degenerates to the cross product
if n = 2). The physical interpretation of the vector field χ is clear: the second
term −∑n

j=1 k jφj∇φj is a weighted sum of all the gradients, which guides the
trajectory towards the intersection of the hyper-surfaces (i.e., the desired path),
while the first term ×

(
∇φ1, . . . ,∇φn

)
, being orthogonal to all the gradients

∇φj [45, Proposition 7.2.1], provides a propagation direction along the desired
path.

10.3 distributed motion coordination on de-
sired paths

In Chapter 9, the higher-dimensional guiding vector field in (10.1) is proved to
possess no singular points where the vector field becomes zero, thanks to the
additional dimension (i.e., the additional virtual coordinate w). However, like
many of other current studies (e.g., [50], [74], [104]), the vector field is used for
the guidance of only one single robot. We aim to extend the vector field to include
a coordination component and achieve motion coordination among multiple robots.
Since the additional virtual coordinate w not only helps eliminate singular points,
but also acts as the path parameter, one idea is to utilize the virtual coordinate w
to coordinate the robots’ motions. Thus, the question is:

General Question: Suppose there are N robots, where N > 1, and the com-
munication topology is described by an undirected graph G = (V , E), where
V = {1, . . . , N} represent these N robots; if (i, j) ∈ E , then information can flow
between Robot i and Robot j. Based on the higher-dimensional vector field in
(10.1), how to design an extra coordination mechanism using the virtual coordinates
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w[i], i ∈ ZN
1 , such that 1) Each robot can follow their desired paths; 2) All robots

can coordinate their motions by controlling the virtual coordinates w[i], i ∈ ZN
1 ,

via local information exchange among neighboring robots?
The extra coordination mechanism and the precise meaning of motion coordina-

tion will become clear in the sequel, where a mathematical problem formulation
based on dynamical systems theory is presented.

10.3.1 Mathematical problem formulation

Suppose the i-th robot is required to follow a path in Rn, parameterized by n
parametric equations:

x[i]1 = f [i]1 (w[i]) . . . x[i]n = f [i]n (w[i]), (10.2)

where x[i]j is the j-th coordinate, f [i]j ∈ C2 is the j-th parametric function for the

i-th robot, i ∈ ZN
1 , j ∈ Zn

1 , and w[i] is the parameter of the desired path. To derive
the path-following guiding vector field, we use the parameter w[i] as an additional
virtual coordinate, and the higher-dimensional desired path is described by

P [i] := {ξ[i] ∈ Rn+1 : φ
[i]
1 (ξ[i]) = 0, . . . , φ

[i]
n (ξ[i]) = 0},

where ξ[i] := (x[i]1 , . . . , x[i]n , w[i]) ∈ Rn+1 denotes the generalized coordinate of the
i-th robot. Note that the (n+ 1)-th entry of ξ[i] is the additional virtual coordinate
w[i]. The level functions are

φ
[i]
j (x[i]1 , . . . , x[i]n , w[i]) = x[i]j − f [i]j (w[i])

for i ∈ ZN
1 and j ∈ Zn

1 . We define

Φ[i](ξ[i]) := (φ
[i]
1 (ξ[i]), . . . , φ

[i]
n (ξ[i]))

>
∈ Rn.

Observe that ξ[i] ∈ P [i] if and only if ‖Φ[i](ξ[i])‖ = 0. Therefore, we can use
Φ[i](ξ[i]) to quantify the distance to the desired path P [i]. In the context of
path following, we call Φ[i](ξ[i]) the path-following error to P [i]. The aim is to
design guiding controllers such that the norm ‖Φ[i](ξ[i])‖ converges to zero
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eventually. By combining (10.1) and (10.2), we obtain the analytic expression of
the path-following guiding vector field pfχ[i] : Rn+1 → Rn+1 for the i-th robot:

pfχ[i](ξ[i]) =


(−1)n f [i]1

′
(w[i])− k[i]1 φ

[i]
1 (ξ[i])

...

(−1)n f [i]n
′
(w[i])− k[i]n φ

[i]
n (ξ[i])

(−1)n + ∑n
l=1 k[i]l φ

[i]
l (ξ[i]) f [i]l

′
(w[i])

 (10.3)

for i ∈ ZN
1 , where k[i]j > 0 are constant gains, and f [i]j

′
are the derivatives of f [i]j

with respect to the argument w[i] ∈ R.
To achieve coordination in w[i], thus indirectly coordinate the positions of

robots, we introduce a new concept: a coordination component. The coordination
component crχ[i] : R ×RN → Rn+1 for the i-th robot, i ∈ ZN

1 , is:

crχ[i](t, w) =
(
0, · · · , 0, c[i](t, w)

)> ∈ Rn+1, (10.4)

where w = (w[1], . . . , w[N])
>

, and c[i] : R ×RN → R is called the coordination
function to be designed later1, which enables coordination among robots through
the local interactions via the neighboring virtual coordinates w[j] for j ∈ Ni.
Specifically, we want the virtual coordinates of multiple robots w[i](t)− w[j](t) to
converge to ∆[i,j](t) for (i, j) ∈ E , where ∆[i,j](t) ∈ R are real-valued continuously
differentiable functions, representing the desired differences between w[i](t) and
w[j](t) at time t, satisfying ∆[i,j](t) = −∆[j,i](t). It is naturally assumed that
∆[i,j](t) are chosen appropriately such that the resulting formation is feasible2 at
any time t ≥ 0.

We design the i-th coordinating guiding vector field X[i] : R×Rn+1+N → Rn+1 to
be the weighted sum of the path-following vector field pfχ[i] and the coordination
component crχ[i] as below:

X[i](t, ξ[i], w) = pfχ[i](ξ[i]) + kc
crχ[i](t, w), (10.5)

where kc > 0 is a parameter to adjust the contribution of pfχ[i] and crχ[i] to
X[i]. With a larger value of kc, the motion coordination is achieved faster. The
coordinating guiding vector field X[i] represents the desired moving direction
for Robot i, guiding the robot’s motion. Thus it is imperative to study the

1 Although the argument of the coordination function c[i](·, ·) contains all the virtual coordinates w[j],
j ∈ ZN

1 , we do not require the knowledge of all virtual coordinates, but only those of the neighbors
w[j] for j ∈ Ni as shown later.

2 If the communication topology does not contain any cycles, then arbitrary values of the desired
parametric differences ∆[i,j] are feasible as long as ∆[i,j] = −∆[j,i] is satisfied for i, j ∈ ZN

1 ; otherwise,
one needs to examine the feasibility of the resulting formation.
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guidance result, or precisely, the convergence results of the integral curves of the
vector field X[i] for i ∈ ZN

1 . Precisely, we stack all the robot states as a vector

ξ := (ξ[1]
>

, . . . , ξ[N]>)
>
∈ R(n+1)N and stack all the coordinating guiding vector

fields as X(t, ξ) := (X[1]>, . . . ,X[N]>)
>
∈ R(n+1)N . We study the integral curves

of X(t, ξ); that is, the trajectories or solutions to the differential equation

ξ̇ = X(t, ξ) (10.6)

given an initial condition ξ0 ∈ R(n+1)N at t = t0 ≥ 0. Note that if the coordination
function c[i](t, w) in (10.4) is time-invariant, it is not explicitly dependent on time
t, and we can simply rewrite it to c[i](w). In this case, the system (10.6) can
be rewritten as ξ̇ = X(ξ), which is an autonomous system; otherwise, it is a
non-autonomous system [66, Chapter 1], which is more difficult to analyze as we
will show later. Now we can formally formulate the problem as follows:

Problem 10.1 (Multi-robot path following). Design the coordinating guiding
vector field X[i] in (10.5) for i ∈ ZN

1 , such that the trajectories of (10.6), given
an initial condition ξ0 ∈ R(n+1)N at t = t0 ≥ 0, fulfill the following two control
objectives:

1. (Path Following) Robot i’s path-following error to its desired path P [i] con-
verges to zero asymptotically for i ∈ ZN

1 . That is, ‖Φ[i](ξ[i](t))‖ → 0 as t→ ∞
for i ∈ ZN

1 .

2. (Motion Coordination) Each robot’s motion is coordinated distributedly sub-
ject to the communication graph G (i.e., Robot i can communicate with Robot
j if and only if (i, j) ∈ E ) such that their additional virtual coordinates satisfy
w[i](t)− w[j](t)− ∆[i,j](t)→ 0 as t→ ∞ for (i, j) ∈ E .

Given the path-following vector field in (10.3), we will design the coordina-
tion function c[i](·) later such that it coordinates the robots’ motion but do not
affect the path-following performance. We propose the following mild standing
assumption:

Assumption 10.2. The communication graph G = (V , E) is undirected and
connected.

Assumption 10.2 implies that if (i, j) ∈ E , then Robot i and Robot j can share
information bidirectionally, and no robot is isolated from the multi-robot system
(e.g., a cycle graph satisfies this assumption).
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10.3.2 Time-invariant and time-varying coordination components and conver-
gence analysis

Observe that the coordination of the virtual coordinates directly affects the
coordination of the positions of the robots implicitly, since the virtual coordinate
corresponds to the parameter of a desired path. Motivated by this observation, we
will design both time-invariant coordination component c[i](w) and time-varying
coordination component c[i](t, w) in (10.4) in this subsection, and analyze the
trajectories of (10.6), which is an autonomous system in the former case and a
non-autonomous system in the latter case.

10.3.2.1 Time-invariant coordination component

Given the desired path P [i], we can design the desired parametric differences

∆[i,j] starting from a particular reference configuration3 w∗ := (w[1]∗, · · · , w[N]∗)
>

.
Hence, ∆∗ = D>w∗ is the stacked vector of ∆[i,j], (i, j) ∈ E , where D ∈ RN×|E|

is an incidence matrix obtained by assigning arbitrary orientations to the edges
of the undirected graph4 [88, p. 23]. Now we propose to employ the following
consensus control algorithm [116, p. 25]:

c[i] = − ∑
j∈Ni

(
w[i] − w[j] − ∆[i,j]), ∀i ∈ ZN

1 . (10.7)

Equation (10.7) can be rewritten in a compact form as

c(w) = −L(w−w∗) = −Lw̃, (10.8)

where c(w) = (c[1](w), . . . , c[N](w))
>

, L = L(G) is the Laplacian matrix and

w̃ = w−w∗.

Combining (10.3), (10.4), (10.5) and (10.7), we attain the coordinating guiding
vector field X[i] for i ∈ ZN

1 . The vector field X[i] only takes as inputs Robot i’s
own states and its neighbors’ virtual coordinates w[j] for j ∈ Ni.

Remark 10.3. From (10.4), (10.5) and (10.7), one observes that neighboring infor-
mation exchange only happens in the coordination component c[i](·). Notably,
the communication burden is low: Robot i transmits only a scalar w[i] to the
neighboring Robot j ∈ Ni. /

3 Note that w∗ is not known by the robots. Instead, Robot i is only aware of the desired parametric
differences relative to its neighbors (i.e., ∆[i,j] for j ∈ Ni).

4 Different assignments of the edges’ orientations of the undirected graph only affect the signs of
each entry in an incidence matrix D, while the desired relative parametric differences are still the
same among robots. In addition, the Laplacian matrix L = DD> introduced later remains the same
independent of the orientation assignment.
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10.3.2.2 Convergence analysis for the time-invariant case

The convergence analysis of trajectories to (10.6) is nontrivial given that the
right-hand side of (10.6) is not a gradient of any potential function, since the
path-following vector field in (10.1) contains a wedge product of all the gradients.
In this subsection, we show that the coordinating guiding vector field (10.5)
enables multiple robots to follow their desired paths while they are coordinated
by the virtual coordinates such that w[i](t)−w[j](t) converges to ∆[i,j] for (i, j) ∈ E
as t → ∞. For simplicity, we first consider Robot i, and most of the function
arguments are ignored henceforth unless ambiguity arises. We define

K[i] := diag{k[i]1 , . . . , k[i]n }

f [i]
′
(w[i]) := ( f [i]1

′
(w[i]), . . . , f [i]n

′
(w[i]))

>
.

Then one can calculate that

∇φ
[i]
j

>pfχ[i] =



0
...

1
...

0

− f [i]j

′
(w[i])



> 
(−1)n f [i]1

′
(w[i])− k[i]j φ

[i]
1

...

(−1)n f [i]n
′
(w[i])− k[i]n φ

[i]
n

(−1)n + ∑n
l=1 k[i]l φ

[i]
l f [i]l

′
(w[i])



= −k[i]j φ
[i]
j − f [i]j

′
(w[i]) · [ f [i]

′
(w[i])

>
K[i]Φ[i]]

for j ∈ Zn
1 , where 1 is at the j-th entry of ∇φ

[i]
j . Therefore, we have

∇φ
[i]
1
>

pfχ[i]

...

∇φ
[i]
n
>

pfχ[i]

 = −K[i]Φ[i] − f [i]
′
(w[i]) f [i]

′
(w[i])

>
K[i]Φ[i]. (10.9)

We can also calculate that
∇φ

[i]
1
>

crχ[i](w)
...

∇φ
[i]
n
>

crχ[i](w)

 = −c[i](w)


f [i]1

′
(w[i])
...

f [i]n
′
(w[i])

 = −c[i](w) f [i]
′
(w[i]). (10.10)
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Therefore,

Φ̇[i] =
d
dt


φ
[i]
1
...

φ
[i]
n

 =


∇φ

[i]
1
>

pfχ[i] + kc∇φ
[i]
1
>

crχ[i](w)
...

∇φ
[i]
n
>

pfχ[i] + kc∇φ
[i]
n
>

crχ[i](w)


(10.9),(10.10)

= −K[i]Φ[i] − f [i]
′
(w[i]) f [i]

′
(w[i])

>
K[i]Φ[i] − kcc[i](w) f [i]

′
(w[i]). (10.11)

Now we consider all robots. We define

F := diag{ f [1]
′
, . . . , f [N]′} ∈ RnN×N

K := diag{K[1], . . . , K[N]} ∈ RnN×nN

Φ := (Φ[1]>, · · · , Φ[N]>)
>
∈ RnN .

Then according to (10.11), we have

Φ̇ =


−K[1]Φ[1] − f [1]

′
(w[1]) f [1]

′
(w[1])

>
K[1]Φ[1] − kcc[1](w) f [1]

′
(w[1])

...

−K[N]Φ[N] − f [N]′(w[N]) f [N]′(w[N])
>

K[N]Φ[N] − kcc[N](w) f [N]′(w[N])


= −KΦ− FF>KΦ− kcFc(w). (10.12)

One can also calculate that

ẇ[i] =
[
0 · · · 0 1

]
(pfχ[i](ξ[i]) + kc

crχ[i](ξ[i]))

= (−1)n + f [i]
′
(w[i])

>
K[i]Φ[i](ξ[i]) + kcc[i](w).

(10.13)

By w̃ := w−w∗, there holds

˙̃w = ẇ = (−1)n1 + F>KΦ + kcc(w), (10.14)

where 1 ∈ RN is a vector consisting of all ones. The Laplacian matrix can be
factorized as L = DD>, where D ∈ RN×|E| is the incidence matrix. We define
the composite error vector e to be

e = (Φ>, (D>w̃)
>
)
>
∈ RnN+|E |

and the composite gain matrix to be

K = diag{K, kc I|E |} ∈ R(nN+|E |)×(nN+|E |),
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where I|E | is the |E |-by-|E | identity matrix. Therefore, from (10.8), (10.12) and
(10.14), and noting that D>1 = 0, we have the following composite error dynam-
ics:

ė =

[
Φ̇

D> ˙̃w

]
=

[
−KΦ− FF>KΦ + kcFLw̃

D>F>KΦ− kcD>Lw̃

]
. (10.15)

With the error dynamics, one needs to prove that e(t)→ 0 as t→ ∞ to show the
effectiveness of the coordinating guiding vector field X[i]. This result is formally
stated below under the following practical assumption:

Assumption 10.4. The first and second derivatives of f [i]j (·) in (10.2) are bounded

for all i ∈ ZN
1 , j ∈ Zn

1 .

Theorem 10.5 (Time-invariant coordination). Under Assumptions 10.2 and 10.4, and
given constant desired parametric differences ∆[i,j] for (i, j) ∈ E , the coordinating guiding
vector fields X[i] for i ∈ ZN

1 designed by combining (10.3), (10.4), (10.5) and (10.7)
solve Problem 10.1 globally in the sense that the aggregate initial state ξ0 ∈ R(n+1)×N

can be arbitrary.

Proof. Consider the following Lyapunov function candidate

V(e) =
1
2

e>Ke =
1
2

(
Φ>KΦ + kcw̃>Lw̃

)
, (10.16)

of which the time derivative satisfies

V̇(e) = ė>Ke

(10.15)
=

[
−KΦ− FF>KΦ + kcFLw̃

D>F>KΦ− kcD>Lw̃

]> [
K

kc I|E |

] [
Φ

D>w̃

]

=− ‖KΦ‖2 − ‖F>KΦ‖2 + kc(FLw̃)>KΦ + kc(F
>KΦ)

>
Lw̃− k2

c‖Lw̃‖2

=− ‖KΦ‖2 − ‖F>KΦ‖2 + 2kc(F
>KΦ)

>
(Lw̃)− k2

c‖Lw̃‖2 (10.17)

=− ‖KΦ‖2 − ‖F>KΦ− kcLw̃‖2

≤− ‖KΦ‖2 ≤ 0. (10.18)

From (10.18), we know that V̇ is negative semi-definite. It follows from the
LaSalle’s invariance principle (Theorem 2.6) that the trajectories of (10.6) will
converge to the largest invariant set A in

B := {e : V̇(e) = 0} = {e : Φ = 0}.
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By checking (10.15), we can conclude that the largest invariant set A in B cor-
responds to having D>Lw̃ = D>DD>w̃ = 0, which implies D>w̃ = 0 as we
will show now. Since D>DD>w̃ = 0, it follows that D>w̃ is in the null space of
D>D, which is the null space of D. In addition, D>w̃ is in the range space of D>,
which is orthogonal to the null space of D. To sum up, D>w̃ is both contained
in and orthogonal to the null space of D. This implies that D>w̃ = 0. Therefore,
the largest invariant set A in B is

A = {e : Φ = 0, D>w̃ = 0}.

This implies that ‖Φ[i]‖ → 0 for all i ∈ ZN
1 and (w[i](t) − w[j](t)) − ∆[i,j] →

0 for (i, j) ∈ E as t → ∞. Namely, all robots’ path-following errors vanish
asymptotically, and the differences of neighboring virtual coordinates w̃ converge
to the desired relative states ∆∗, and thus the coordinated motion is achieved.
Note that (10.16) is positive (except when e = 0) and radially unbounded in e
(i.e., V(e) → ∞ as ‖e‖ → ∞), and its time derivative is negative semi-definite
regardless of the magnitude of e. Hence, the vanishing of the composite error e
is global regardless of the initial aggregate state ξ0.

10.3.2.3 Time-varying coordination component

In practice, one might want to have time-dependent desired parametric differences
∆[i,j](t) such that the inter-robot distances dynamically adapt to the environment
[163]. To this end, we define the continuously differentiable reference states
δ[i] : R≥0 → R for i ∈ ZN

1 such that the desired virtual coordinate difference
∆[i,j](t) = δ[i](t)− δ[j](t). It is obvious that ∆[i,j](t) = −∆[j,i](t). Therefore, we
employ the following time-varying consensus control algorithm [116, p. 25]:

c[i](t, w) =
δ̇[i](t)

kc
− ∑

j∈Ni

(
w[i](t)− w[j](t)− ∆[i,j](t)

)
. (10.19)

The quantity δ̇[i](t) in (10.19) is a feed-forward term to “inform” the changing rate
of the time-varying reference state, and this quantity is indispensable since the
coordination objective is now time-varying. The gain 1/kc will be canceled out in
the subsequent theoretical derivation. Combining (10.3), (10.4), (10.5) and (10.19),
we attain the coordinating guiding vector field X[i] for i ∈ ZN

1 . The vector field
X[i] takes as inputs Robot i’s own states, its neighbors’ virtual coordinates w[j]

for j ∈ Ni, the time-varying desired difference ∆[i,j](t), and the time derivative of
its reference state δ̇[i](t). Note that Remark 10.3 still applies here.
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10.3.2.4 Convergence analysis for the time-varying case

The analysis of the convergence of trajectories of (10.6) is more difficult. This
is not only because the right-hand side of (10.6) is not a gradient of any po-
tential function as mentioned before, but also because (10.6) is nonlinear and
non-autonomous (as the reference states δ[i](t) are explicitly time-dependent).
Nevertheless, using different analysis tools, we can still obtain the same conclu-
sion as Theorem 10.5. Namely, we show that the coordinating guiding vector
field (10.5) enables multiple robots to follow their desired paths while they are
coordinated by the virtual coordinates such that w[i](t) − w[j](t) converges to
∆[i,j](t) for (i, j) ∈ E .

For convenience of subsequent theoretical analysis, we define w̃[i]
δ (t) as the

difference between the virtual coordinate w[i](t) and the reference state δ[i](t);
that is, w̃[i]

δ (t) := w[i](t)− δ[i](t). Observe that the coordination control objective

w[i](t)−w[j](t)→ ∆[i,j](t) is equivalent to that w̃[i]
δ − w̃[j]

δ → 0 for (i, j) ∈ E , which

implies that the new states w̃[i]
δ , i ∈ ZN

1 , reach consensus eventually. Therefore,
Equation (10.19) can be rewritten as below:

c[i](t, w) =
δ̇[i](t)

kc
− ∑

j∈Ni

(w̃[i]
δ (t)− w̃[j]

δ (t)), (10.20)

For notational simplicity, we stack w̃[i]
δ and δ[i] in two column vectors respectively:

w̃δ := (w̃[1]
δ , · · · , w̃[N]

δ )
>

and δ := (δ[1], . . . , δ[N])
>

; hence,

w̃δ(t) = w(t)− δ(t).

Therefore, (10.20) can be further simplified as below:

c(t, w) = δ̇(t)/kc − Lw̃δ(t), (10.21)

where c(t, w) = (c[1](t, w), . . . , c[N](t, w))
>

and L = L(G) is the Laplacian matrix.
Thanks to the simplification, the convergence analysis becomes similar to that of
the time-invariant case in Section 10.3.2.2. Therefore, we use the same notations
as before, and the calculations are similar except for formula related to the
time-dependent reference states δ(t). In particular, (10.14) is replaced by the
following:

˙̃wδ = ẇ− δ̇
(10.21)
= [(−1)n1 + F>KΦ + kc(δ̇/kc − Lw̃δ(t))]− δ̇

= [(−1)n1 + F>KΦ− kcLw̃δ(t) + δ̇]− δ̇

= (−1)n1 + F>KΦ− kcLw̃δ,

(10.22)
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where note that the first term δ̇/kc in (10.21) has been canceled out, and thus
(10.22) is the same as the time-invariant case in (10.14) except that w̃δ(t) =
w(t)− δ(t) contains the term δ(t) that is time-dependent. We need different
analysis tools for the non-autonomous system (10.6) due to (10.21). Specifically,
we will employ the LaSalle’s invariance principle for non-autonomous systems (i.e.,
Theorem 2.8) and Barbalat’s lemma (i.e, Lemma 2.7) for the analysis. We impose
the following reasonable assumption for the time-varying reference states:

Assumption 10.6. The time derivatives of the reference states δ̇[i](t) are bounded
at any time instant t ≥ 0 for all i ∈ ZN

1 .

We have the following theorem:

Theorem 10.7 (Time-varying coordination). Under Assumptions 10.2, 10.4 and
10.6, and given time-dependent desired parametric differences ∆[i,j](t) for (i, j) ∈ E , the
coordinating guiding vector fields X[i] for i ∈ ZN

1 designed by combining (10.3), (10.4),
(10.5) and (10.19) solve Problem 10.1 globally in the sense that the aggregate initial state
ξ ∈ R(n+1)×N can be arbitrary.

Proof. We define a similar composite error vector

eδ = (Φ>, (D>w̃δ)
>
)
>
∈ RnN+|E |

and the composite error dynamics is

ėδ =

[
Φ̇

D> ˙̃wδ

]
=

[
−KΦ− FF>KΦ + kcFLw̃δ

D>F>KΦ− kcD>Lw̃δ

]
. (10.23)

We use the Lyapunov function candidate V = 1
2 e>δ Keδ, and taking the time

derivative of V, we have:

V̇(eδ) = ė>δ Keδ

(10.23)
= − ‖KΦ‖2 − ‖F>KΦ‖2 + 2kc(F

>KΦ)
>
(Lw̃δ)− k2

c‖Lw̃δ‖2 (10.24)

≤ − ‖KΦ‖2 ≤ 0, (10.25)

Equation (10.25) means that V̇ is negative semi-definite. The system (10.6) is
non-autonomous due to the time-varying term (10.21) in the coordinating guiding
vector fields X[i] for i ∈ ZN

1 . Therefore, we use the LaSalle’s invariance principle
for non-autonomous systems (i.e., Theorem 2.8) to conclude that ‖KΦ‖2 → 0
as t → ∞, hence ‖Φ[i]‖ → 0 as t → ∞ for all i ∈ ZN

1 ; i.e., all robots’ path-
following errors vanish asymptotically. Moreover, the quadratic form of the
Lyapunov function V implies that V is radially unbounded with respect to ‖eδ‖
(i.e., V(eδ) → ∞ as ‖eδ‖ → ∞), and thus the convergence holds globally: the
norm of the initial path-following error ‖eδ(0)‖ can be arbitrarily large.
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To prove the convergence of the second term D>w̃δ of the composite error
vector, we use Barbalat’s lemma (i.e., Lemma 2.7). Firstly, (10.25) shows that
V̇ ≤ 0, hence V(t) ≤ V(0) for t ≥ 0. This implies that the composite error eδ is
bounded, and thus Φ and D>w̃δ are all bounded. Due to Assumption 10.4, one
can verify that ėδ in (10.23) is also bounded, and thus Φ̇ and D> ˙̃wδ are bounded
as well. Next, we show that the second-order time derivative V̈ is bounded. One
can calculate that V̈ = ë>δ Keδ + ė>δ Kėδ. It is obvious that the second term of V̈ is
bounded, so we only need to show that ëδ is bounded. We have

ëδ =

[
−KΦ̇− ḞF>KΦ− F(Ḟ>KΦ + F>KΦ̇) + kcḞLw̃δ + kcFL ˙̃wδ

D>(Ḟ>KΦ + F>KΦ̇)− kcD>L ˙̃wδ

]
,

where Ḟ = diag{Ḟ[1](w[1]), . . . , Ḟ[N](w[N])} with

Ḟ[i](w[i]) = ( f [i]1

′′
(w[i]), . . . , f [i]n

′′
(w[i]))

>
ẇ[i]

for i ∈ ZN
1 . Since Φ, D>w̃δ, Φ̇, D> ˙̃wδ are all bounded, and by (10.22), Assump-

tions 10.4 and 10.6, we have that ëδ is indeed bounded. Therefore, V̈ is bounded,
and thus V̇ is uniformly continuous in time t. By invoking Lemma 4.3 in [133],
we have that V̇(eδ) → 0 as t → ∞. Equivalently, ė>δ Keδ → 0 as t → ∞. Since
the argument above shows that ‖Φ‖ → 0 as t→ ∞, from (10.24) and the bound-
edness of F and D>w̃δ, we thus have Lw̃δ → 0 as t → ∞. Furthermore, by
Assumption 10.2, Lw̃δ → 0 as t→ ∞ implies that w̃[i]

δ − w̃[j]
δ → 0 for all i, j ∈ ZN

1
[116, Corollarylry 2.5]. This further implies that w[i](t)−w[j](t)→ ∆[i,j](t). There-
fore, the differences in the virtual coordinates w[i] of all robots converge to the
desired value, and thus the coordinated motion can be achieved. As in the proof
of Theorem 10.5, the global convergence property is attained due to the radial
unboundedness of the Lyapunov function V with respect to ‖eδ‖.

10.4 distributed coordinated maneuvering on
surfaces

In this section, we extend the previous results such that N robots can converge to
(possibly different) two-dimensional surfaces (e.g., spheres), while they maneuver
and coordinate their motions according to some parameters of the surfaces. It
is clear in the previous sections what is meant by following a (one-dimensional)
desired path, but it is perhaps unclear what is meant by coordinated motion on
(two-dimensional) surfaces. Therefore, we first clarify the meaning of coordinated
motion on surfaces in Section 10.4.1, and then mathematically formulate the
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problem in Section 10.4.2, and derive the coordinating guiding vector field and
conduct the convergence analysis in Section 10.4.3.

10.4.1 Coordinated motion in a desired set

10.4.1.1 Single robot trajectories in a desired set

For simplicity, we first study trajectories of one robot within a desired set of any
dimensions. Suppose the desired set is in the following parametric form:

x1 = f1(w1, . . . , wk), . . . , xn = fn(w1, . . . , wk), (10.26)

where w1, . . . , wk ∈ R are k parameters, n ∈ N is the dimension of the ambient
Euclidean space (mainly n ∈ {2, 3} for applications with mobile robots), f j, j ∈ Zn

1 ,
are twice continuously differentiable functions (i.e., f j ∈ C2). Precisely, the desired
set described by (10.26) is M := {(x1, . . . , xn) ∈ Rn : (10.26), wj ∈ R, j ∈ Zk

1}.
In particular, generically, if k = 1, then M = P is a desired path, which is
one-dimensional (or roughly speaking, it has one degree of freedom), while if
k = 2, thenM is a two-dimensional surface. The k parameters wj, j ∈ Zk

1, can be
used as coordinates to localize a point inM. Therefore, one can represent the
position of a robot inM by a k-tuple denoted by (w1, . . . , wk)M in the parameter
space. This chapter mainly focuses on parametric paths and surfaces (i.e., k = 1
or k = 2), but the generalization to k > 2 is obvious after we elaborate on the case
of k = 2 in this section.

Typically, if k = 1, thenM is a desired path, denoted by P . It is clear that if a
robot starts from the position (w1)M in P , then its trajectory (subject to directions)
coincides with the desired path P , and how fast the trajectory propagates along
the desired path is determined by the time derivative ẇ1 ∈ R along the robot
trajectory. If k = 2, thenM is a surface, denoted by S . If a robot starts from the
position (w1, w2)M in S , it is the ratio between the different velocities ẇ1 and ẇ2
that determines the eventual trajectory of the robot in S . An example is shown
as follows.

Example 10.8. Suppose the desired setM is the sphere parameterized as below:

Ssph :=


x1 = cos(w1) cos(w2)

x2 = cos(w1) sin(w2)

x3 = sin(w1)

. (10.27)

If ẇ1 = 0 and ẇ2 6= 0, then the robot’s trajectory is parallel to the sphere’s equator
starting from a point in Ssph. /
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We will show later that our proposed coordinating guiding vector field allows
one to set the values of ẇj for j ∈ Zk

1, so we can guarantee that a robot moves as
expected withinM.

10.4.1.2 Coordinated motion of multiple robots

Now we consider N robots, where N > 1. The coordinated motion among
multiple robots is characterized by the predefined desired geometric or para-
metric differences ∆[i,j]

(·) , i 6= j ∈ ZN
1 , between neighboring robots, for which the

neighboring relationships are encoded in an undirected communication graph.
Note that the subscript in ∆[i,j]

(·) specifies which parameter of the desired set is
considered (in the case of one parameter as in the previous section, this subscript
is omitted for simplicity).

In the previous section, we only consider one parameter (i.e., k = 1) w1 to
be communicated among robots. In this case, these robots exhibit behavior of
chasing each other on one-dimensional desired paths P [i]. Dealing with a desired
setM with k > 1 gives us more freedom for the coordinated motion of robots.
For simplicity, we consider the case of k = 2 (i.e., the desired set M is a two-
dimensional surface), in the following example.

Example 10.9. In this example, two robots coordinate their motions in the desired
set: the sphere described by (10.27). Specifically, we require that the difference
between each of the two parameters, w[1]

1 and w[1]
2 , of Robot 1, and each of those

of Robot 2, w[2]
1 and w[2]

2 , is −π. Namely, the desired parametric differences are

∆[1,2]
1 = ∆[1,2]

2 = −π. We also require that, at the steady state, they move at specific
parametric speeds. The desired speeds in the first and the second parameter are
ẇ∗1 = 0 and ẇ∗2 = 1, respectively in the first scenario, and ẇ∗1 = ẇ∗2 = 1 in the
second scenario for both robots. We use the coordinating guiding vector field
that will be introduced later to produce the simulation results shown in Fig. 10.1.
Note that in Fig. 10.1b, during the steady state, the Euclidean distance between
two neighboring robots is not constant, but their geodesic distance, which is
equal to the absolute value of the desired parametric difference |∆[·,·]|, remain
constant. /

In the next subsection, we formally define the problem of motion coordination
of robots on surfaces, and provide the technical detail of the coordinating guiding
vector field for surface navigation as employed in Example 10.9.

10.4.2 Mathematical problem formulation

In previous sections, the i-th robot is required to follow a one-dimensional desired
path, which is parameterized by one parameter w[i]. In contrast, to converge to
a two-dimensional surface, we need to use two parameters denoted by w[i]

1 and
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(a) (b)

Figure 10.1: Simulation results of two robots coordinating their motions on the sphere
described by (10.27). The blue and red dots represent Robot 1 and 2, respec-
tively, and the square symbols represent the initial positions. The desired

parametric differences are ∆[1,2]
1 = ∆[1,2]

2 = −π. (a) The desired parametric
speeds are ẇ∗1 = 0 and ẇ∗2 = 1 for both robots. (b) The desired parametric
speeds are ẇ∗1 = ẇ∗2 = 1 for both robots.

w[i]
2 , respectively. Specifically, suppose the i-th robot is required to converge to

a two-dimensional surface S [i] ⊆ Rn, which is parameterized by n parametric
equations:

x[i]1 = f [i]1 (w[i]
1 , w[i]

2 ) . . . x[i]n = f [i]n (w[i]
1 , w[i]

2 ), (10.28)

where x[i]j is the j-th coordinate, f [i]j ∈ C2 is the j-th parametric function for the

i-th robot, for i ∈ ZN
1 , j ∈ Zn

1 , and w[i]
1 , w[i]

2 are two parameters of the surface. To

derive the corresponding guiding vector field, we use the parameters w[i]
1 and

w[i]
2 as two additional virtual coordinates, and the surface S [i] is described by

S [i] := {ξ[i] ∈ Rn+2 : φ
[i]
1 (ξ[i]) = 0, . . . , φ

[i]
n (ξ[i]) = 0},

where ξ[i] := (x[i]1 , . . . , x[i]n , w[i]
1 , w[i]

2 ) ∈ Rn+2 denotes the generalized coordinate of
the i-th robot. Note that the (n + 1)-th and the (n + 2)-th entries of ξ[i] are the
additional virtual coordinates w[i]

1 and w[i]
2 , respectively. The functions φ

[i]
j are

φ
[i]
j (x[i]1 , . . . , x[i]n , w[i]

1 , w[i]
2 ) = x[i]j − f [i]j (w[i]

1 , w[i]
2 )
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for i ∈ ZN
1 and j ∈ Zn

1 . We define

Φ[i](ξ[i]) := (φ
[i]
1 (ξ[i]), . . . , φ

[i]
n (ξ[i]))

>
∈ Rn.

Observe that ξ[i] ∈ S [i] if and only if ‖Φ[i](ξ[i])‖ = 0. Therefore, we can similarly
use Φ[i](ξ[i]), called the surface-convergence error, to quantify the distance to the
desired surface S [i].

We use the same structure as the guiding vector field discussed before. How-
ever, since the dimensions of the states become n + 2, the original wedge
product is not well-defined. Therefore, we need to introduce an extra vector
v = (v1, . . . , vn+2)

> ∈ Rn+2 into the wedge product. Specifically, the new guid-
ing vector field sfχ[i] : Rn+2 → Rn+2 corresponding to the surface S [i], called the
surface-navigation vector field, is

sfχ[i](ξ[i]) = ∧(∇φ
[i]
1 (ξ[i]), . . . ,∇φ

[i]
n (ξ[i]), v) −

n

∑
j=1

k[i]j φ
[i]
j (ξ[i])∇φ

[i]
j (ξ[i]),

(10.29)

For simplicity, we choose v1 = · · · = vn ≡ 0 while vn+1, vn+2 can be zero or
non-zero values. One can expand (10.29) and attain the detailed expression as
shown below:

sfχ[i](ξ[i]) = (−1)n



vn+2∂w1 f [i]1 − vn+1∂w2 f [i]1
...

vn+2∂w1 f [i]n − vn+1∂w2 f [i]n

vn+2

−vn+1


+



−k[i]1 φ
[i]
1

...

−k[i]n φ
[i]
n

∑n
j=1 k[i]j φ

[i]
j ∂w1 f [i]j

∑n
j=1 k[i]j φ

[i]
j ∂w2 f [i]j


,

(10.30)

where ∂w1 f [i]j :=
∂ f [i]j

∂w[i]
1

and ∂w2 f [i]j :=
∂ f [i]j

∂w[i]
2

for i ∈ ZN
1 and j ∈ Zn

1 .

To achieve coordination in w[i]
1 and w[i]

2 , thus indirectly coordinate the positions

of robots, we similarly introduce two coordination components crχ[i]
1 , crχ[i]

2 : R ×
RN → Rn+2 for the i-th robot, i ∈ ZN

1 :

crχ[i]
1 (t, w[·]

1 ) =
(
0, · · · , 0, c[i]1 (t, w[·]

1 ), 0
)>

, (10.31a)

crχ[i]
2 (t, w[·]

2 ) =
(
0, · · · , 0, 0, c[i]2 (t, w[·]

2 )
)>

, (10.31b)
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where w[·]
1 = (w[1]

1 , . . . , w[N]
1 )

>
, w[·]

2 = (w[1]
2 , . . . , w[N]

2 )
>

, and c[i]1 , c[i]2 : R ×RN →
R are the coordination functions to be designed later5, which enables coordination
among robots through the local interactions via the neighboring virtual coordinates
w[j]

1 and w[j]
2 for j ∈ Ni. Specifically, we want the virtual coordinates of multiple

robots w[i]
1 (t)− w[j]

1 (t) and w[i]
2 (t)− w[j]

2 (t) to converge to ∆[i,j]
1 (t) and ∆[i,j]

2 (t) for

(i, j) ∈ E , where ∆[i,j]
1 (t), ∆[i,j]

2 (t) ∈ R are real-valued continuously differentiable

functions, representing the desired differences between w[i]
1 (t) and w[j]

1 (t) at

time t and satisfying ∆[i,j]
1 (t) = −∆[j,i]

1 (t) and ∆[i,j]
2 (t) = −∆[j,i]

2 (t). It is naturally

assumed that ∆[i,j]
1 (t) and ∆[i,j]

2 (t) are chosen appropriately such that the resulting
formation is feasible at any time t ≥ 0.

We design the i-th coordinating guiding vector field X[i] : R ×Rn+2N → Rn+2

to be the weighted sum of the surface-navigation vector field sfχ[i] and the
coordination components crχ[i]

1 and crχ[i]
2 as below:

X[i](t, ξ[i], w[·]
1 , w[·]

2 ) = sfχ[i](ξ[i])+ kc1
crχ[i]

1 (t, w[·]
1 )+ kc2

crχ[i]
2 (t, w[·]

2 ), (10.32)

where kc1, kc2 > 0 are parameters to adjust the contribution of sfχ[i], crχ[i]
1 and

crχ[i]
2 to X[i].

We stack all the robot states as a vector ξ := (ξ[1]
>

, . . . , ξ[N]>)
>
∈

R(n+2)N and stack all the coordinating guiding vector fields as X(t, ξ) :=

(X[1]>, . . . ,X[N]>)
>
∈ R(n+2)N . Now we need to investigate the integral curves

of X(t, ξ); i.e., the trajectories of the differential equation: ξ̇ = X(t, ξ), given an
initial condition ξ0 ∈ R(n+2)N at t = t0 ≥ 0. For simplicity, we assume that the
coordination functions c[i]1 (t, w[·]

1 ) and c[i]2 (t, w[·]
2 ) in (10.31) are time-invariant,

and v is a constant vector. Therefore, the system (10.33) is an autonomous system:

ξ̇ = X(ξ). (10.33)

Now we can formally formulate the problem.

Problem 10.10 (Multi-robot surface navigation). Design the coordinating guiding
vector field X[i] in (10.32) for i ∈ ZN

1 , such that the trajectories of (10.33), given
an initial condition ξ0 ∈ R(n+2)N at t = t0 ≥ 0, fulfill the following control
objectives:

1. (Surface convergence) Robot i’s surface-convergence errors tend to to zero
asymptotically for i ∈ ZN

1 . Namely, ‖Φ[i](ξ[i](t))‖ → 0 as t → ∞ for
i ∈ ZN

1 .

5 As the first footnote, we do not require the knowledge of all virtual coordinates, but only those of the

neighbors w[j]
1 or w[j]

2 for j ∈ Ni .
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2. (Motion coordination) Each robot’s motion is coordinated distributedly
subject to the communication graph G (i.e., Robot i can communicate with
Robot j if and only if (i, j) ∈ E ) such that their additional virtual coordinates
satisfy w[i]

1 (t)−w[j]
1 (t)−∆[i,j]

1 → 0 and w[i]
2 (t)−w[j]

2 (t)−∆[i,j]
2 → 0 as t→ ∞

for (i, j) ∈ E .

3. (Surface maneuvering) Given desired parametric speeds ẇ∗1 ∈ R and
ẇ∗2 ∈ R, the robot motion can achieve these speeds in the sense that

ẇ[i]
1 (t)→ ẇ∗1 and ẇ[i]

2 (t)→ ẇ∗2 as t→ ∞ for i ∈ ZN
1 .

Given the surface-navigation vector field in (10.30), we will design the coordi-
nation function c[i]1 (·), c[i]2 (·) later.

10.4.3 Time-invariant coordination component

In this subsection, we will design time-invariant coordination components
c[i]1 (w[·]

1 ) and c[i]2 (w[·]
2 ), and analyze the trajectories of (10.33), which is an au-

tonomous system.

10.4.3.1 Coordination component

Given the desired surface S [i], we can design the desired parametric differ-
ences ∆[i,j]

1 and ∆[i,j]
2 starting from particular reference configurations w∗1 :=

(w[1]
1

∗
, · · · , w[N]

1

∗
)
>

and w∗2 := (w[1]
2

∗
, · · · , w[N]

2

∗
)
>

. Hence, ∆∗1 = D>w∗1 ∈ R|E |

and ∆∗2 = D>w∗2 ∈ R|E | are the stacked vectors of ∆[i,j]
1 , ∆[i,j]

2 , (i, j) ∈ E , respec-
tively, where D ∈ RN×|E| is an incidence matrix [88, p. 23]. We employ the
following consensus control algorithm:

c[i]1 = − ∑
j∈Ni

(
w[i]

1 − w[j]
1 − ∆[i,j]

1
)
, (10.34a)

c[i]2 = − ∑
j∈Ni

(
w[i]

2 − w[j]
2 − ∆[i,j]

2
)
, (10.34b)

for i ∈ ZN
1 . Equations (10.34) can be rewritten compactly as

c[·]1 (w[·]
1 ) = −L(w[·]

1 −w∗1 ) = −Lw̃[·]
1 , (10.35a)

c[·]2 (w[·]
2 ) = −L(w[·]

2 −w∗2 ) = −Lw̃[·]
2 , (10.35b)

where c[·]j (w[·]
j ) = (c[1]j (w[·]

j ), . . . , c[N]
j (w[·]

j ))
>

for j = 1, 2, L = L(G) is the Lapla-
cian matrix and

w̃[·]
1 = w[·]

1 −w∗1 , w̃[·]
2 = w[·]

2 −w∗2 .
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Combining (10.30), (10.31), (10.32) and (10.34), we attain the coordinating guiding
vector field X[i] for i ∈ ZN

1 . The vector field X[i] only takes as inputs Robot i’s

own states and its neighbors’ virtual coordinates w[j]
1 , w[j]

2 for j ∈ Ni.

Remark 10.11. As in Remark 10.3, from (10.31), (10.32) and (10.34), one observes
that neighboring information exchange only involves the coordination compo-
nents c[i]1 , c[i]2 , and Robot i transmits only two scalars w[i]

1 , w[i]
2 to the neighboring

Robot j ∈ Ni. /

10.4.3.2 Convergence analysis

In this subsection, we show that the coordinating guiding vector field (10.32)
enables multiple robots to follow their desired paths while they are coordinated by
the virtual coordinates such that w[i]

1 (t)− w[j]
1 (t) converges to ∆[i,j]

1 , and w[i]
2 (t)−

w[j]
2 (t) converges to ∆[i,j]

2 for (i, j) ∈ E as t→ ∞. To achieve motion coordination
on a surface, we impose the following reasonable assumption:

Assumption 10.12. The first derivatives ∂w1 f [i]j (·) :=
∂ f [i]j

∂w[i]
1

, ∂w2 f [i]j (·) :=
∂ f [i]j

∂w[i]
2

,

and the second derivatives ∂w1
w1 f [i]j (·), ∂w2

w1 f [i]j (·), ∂w1
w2 f [i]j (·), ∂w2

w2 f [i]j (·), where

∂
wl
wk f [i]j (·) :=

∂2 f [i]j

∂w[i]
l ∂w[i]

k

for k, l ∈ {1, 2}, are bounded for all i ∈ ZN
1 , j ∈ Zn

1 .

Now we can reach the following theorem:

Theorem 10.13 (Motion coordination on surfaces). Under Assumptions 10.2 and
10.12, and given constant desired parametric differences ∆[i,j]

1 , ∆[i,j]
2 for (i, j) ∈ E , the

coordinating guiding vector fields X[i] for i ∈ ZN
1 designed by combining (10.30),

(10.31), (10.32) and (10.35), and choosing

v = (−1)n+1(0, . . . , 0, ẇ∗2 ,−ẇ∗1)

in (10.29), solve Problem 10.10 globally in the sense that the aggregate initial state
ξ0 ∈ R(n+2)×N can be arbitrary.

Proof. For simplicity, we first consider Robot i, and most of the function argu-
ments are ignored henceforth unless ambiguity arises. We define

K[i] := diag{k[i]1 , . . . , k[i]n } ∈ Rn×n,

∂w1 f [i]· (·) := (∂w1 f [i]1 (w[i]
1 , w[i]

2 ), . . . , ∂w1 f [i]n (w[i]
1 , w[i]

2 ))
>

,

∂w2 f [i]· (·) := (∂w2 f [i]1 (w[i]
1 , w[i]

2 ), . . . , ∂w2 f [i]n (w[i]
1 , w[i]

2 ))
>

.
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Then one can calculate that

∇φ
[i]
j

>sfχ[i] (10.30)
=



0
...

1
...

0

−∂w1 f [i]j

−∂w2 f [i]j



>
∧(∇φ

[i]
1 , . . . ,∇φ

[i]
n , v) +



−k[i]1 φ
[i]
1

...

−k[i]n φ
[i]
n

∑n
j=1 k[i]j φ

[i]
j ∂w1 f [i]j

∑n
j=1 k[i]j φ

[i]
j ∂w2 f [i]j





= −k[i]j φ
[i]
j − ∂w1 f [i]j · [∂w1 f [i]·

>
K[i]Φ[i]]− ∂w2 f [i]j · [∂w2 f [i]·

>
K[i]Φ[i]]

for j ∈ ZN
1 , where 1 is at the j-th entry of ∇φ

[i]
j . Therefore, we have


∇φ

[i]
1
>

sfχ[i]

...

∇φ
[i]
n
>

sfχ[i]

 = −K[i]Φ[i] − ∂w1 f [i]· · [∂w1 f [i]·
>

K[i]Φ[i]]

− ∂w2 f [i]· · [∂w2 f [i]·
>

K[i]Φ[i]]. (10.36)

We can also calculate that
∇φ

[i]
1
>

crχ[i]
1 (w)

...

∇φ
[i]
n
>

crχ[i]
1 (w)

 = −c[i]1 (w)


∂w1 f [i]1

...

∂w1 f [i]n

 = −c[i]1 (w)∂w1 f [i]· (w). (10.37)

The same calculation applies for crχ[i]
2 . Therefore,

Φ̇[i] =
d
dt

(
φ
[i]
1 , . . . , φ

[i]
n

)>

=


∇φ

[i]
1
>

sfχ[i] + kc1∇φ
[i]
1
>

crχ[i]
1 + kc2∇φ

[i]
1
>

crχ[i]
2

...

∇φ
[i]
n
>

sfχ[i] + kc1∇φ
[i]
n
>

crχ[i]
1 + kc2∇φ

[i]
n
>

crχ[i]
2


(10.36),(10.37)

= − K[i]Φ[i] − ∂w1 f [i]· ∂w1 f [i]·
>

K[i]Φ[i] − ∂w2 f [i]· ∂w2 f [i]·
>

K[i]Φ[i]

− kc1c[i]1 (w)∂w1 f [i]· (w)− kc2c[i]2 (w)∂w2 f [i]· (w).
(10.38)
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for i ∈ ZN
1 . Now we consider all robots. We define

F1 := diag{∂w1 f [1]· , . . . , ∂w1 f [N]
· } ∈ RnN×N

F2 := diag{∂w2 f [1]· , . . . , ∂w2 f [N]
· } ∈ RnN×N

K := diag{K[1], . . . , K[N]} ∈ RnN×nN

Φ := (Φ[1]>, · · · , Φ[N]>)
>
∈ RnN .

Then we have the following equation:

Φ̇ =


−K[1]Φ[1]−∂w1 f [1]· ∂w1 f [1]·

>
K[1]Φ[1]−∂w2 f [1]· ∂w2 f [1]·

>
K[1]Φ[1]

−kc1c[1]1 (w)∂w1 f [1]· (w)−kc2c[1]2 (w)∂w2 f [1]· (w)

...
−K[N]Φ[N]−∂w1 f [N]

· ∂w1 f [N]
·
>

K[N]Φ[N]−∂w2 f [N]
· ∂w2 f [N]

·
>

K[N]Φ[N]

−kc1c[N]
1 (w)∂w1 f [N]

· (w)−kc2c[N]
2 (w)∂w2 f [N]

· (w)


= −KΦ− F1F1

>KΦ− F2F2
>KΦ− kc1F1c[·]1 (w)− kc2F2c[·]2 (w). (10.39)

One can also calculate that

ẇ[i]
1 =

[
0 · · · 0 1 0

]
(sfχ[i] + kc1

crχ[i]
1 + kc2

crχ[i]
2 )

= (−1)nvn+2 + ∂w1 f [i]·
>

K[i]Φ[i](ξ[i]) + kc1c[i]1 ,

ẇ[i]
2 =

[
0 · · · 0 0 1

]
(sfχ[i] + kc1

crχ[i]
1 + kc2

crχ[i]
2 )

= (−1)n+1vn+1 + ∂w2 f [i]·
>

K[i]Φ[i](ξ[i]) + kc2c[i]2 .

(10.40)

By w̃ := w−w∗, there holds

˙̃w[·]
1 = ẇ[·]

1 = (−1)nvn+21 + F1
>KΦ + kc1c[·]1 , (10.41)

˙̃w[·]
2 = ẇ[·]

2 = (−1)n+1vn+11 + F2
>KΦ + kc2c[·]2 . (10.42)

The Laplacian matrix can be factorized as L = DD>. We define the composite
error vector e to be

e = (Φ>, (D>w̃[·]
1 )
>

, (D>w̃[·]
2 )
>
)
>
∈ RnN+2|E |

and the composite gain matrix to be

K = diag{K, kc1 I|E |, kc2 I|E |} ∈ R(nN+2|E |)×(nN+2|E |).
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Therefore, from (10.35), (10.39) and (10.41), and noting that D>1 = 0, we have
the following composite error dynamics:

ė =

 Φ̇

D> ˙̃w[·]
1

D> ˙̃w[·]
2

 =

−KΦ− F1F1
>KΦ− F2F2

>KΦ + kc1F1Lw̃[·]
1 + kc2F2Lw̃[·]

2

D>F1
>KΦ− kc1D>Lw̃[·]

1

D>F2
>KΦ− kc2D>Lw̃[·]

2

 .

(10.43)

Consider the following Lyapunov function candidate

V(e) =
1
2

e>Ke =
1
2

(
Φ>KΦ + kc1w̃[·]

1
>

Lw̃[·]
1 + kc2w̃[·]

2
>

Lw̃[·]
2

)
, (10.44)

of which the time derivative satisfies

V̇(e) =ė>Ke

(10.43)
=

−KΦ− F1F1
>KΦ− F2F2

>KΦ + kc1F1Lw̃[·]
1 + kc2F2Lw̃[·]

2

D>F1
>KΦ− kc1D>Lw̃[·]

1

D>F2
>KΦ− kc2D>Lw̃[·]

2


>

K

kc1 I|E |
kc2 I|E |


 Φ

D>w̃[·]
1

D>w̃[·]
2

 (10.45)

=− ‖KΦ‖2 − ‖F>1 KΦ‖2 − ‖F>2 KΦ‖2 + kc1(F1Lw̃[·]
1 )>KΦ

+ kc2(F2Lw̃[·]
2 )>KΦ + kc1(F

>
1 KΦ)

>
Lw̃[·]

1 − k2
c1‖Lw̃[·]

1 ‖2

+ kc2(F
>
2 KΦ)

>
Lw̃[·]

2 − k2
c2‖Lw̃[·]

2 ‖2 (10.46)

=− ‖KΦ‖2 − ‖F1
>KΦ‖2 − ‖F>2 KΦ‖2 + 2kc1(F1

>KΦ)
>
(Lw̃[·]

1 )

+ 2kc2(F2
>KΦ)

>
(Lw̃[·]

2 )− k2
c1‖Lw̃[·]

1 ‖2 − k2
c2‖Lw̃[·]

2 ‖2 (10.47)

=− ‖KΦ‖2 − ‖F1
>KΦ− kc1Lw̃[·]

1 ‖2 − ‖F>2 KΦ− kc2Lw̃[·]
2 ‖2

≤− ‖KΦ‖2 ≤ 0. (10.48)

From (10.48), we know that V̇ is negative semi-definite. We use the LaSalle’s
invariance principle (i.e., Theorem 2.8) to conclude that ‖KΦ‖2 → 0 as t → ∞,
hence ‖Φ[i]‖ → 0 as t→ ∞ for all i ∈ ZN

1 ; i.e., all robots’ path-following errors
vanish asymptotically. Moreover, the quadratic form of the Lyapunov function
V implies that V is radially unbounded with respect to ‖e‖ (i.e., V(e) → ∞
as ‖e‖ → ∞), and thus the convergence holds globally: the norm of the initial
path-following error ‖e(0)‖ can be arbitrarily large.
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To prove the convergence of the second and third term D>w̃[·]
1 , D>w̃[·]

2 of the
composite error vector, we use Barbalat’s lemma (i.e., Lemma 2.7). Firstly, (10.48)
shows that V̇ ≤ 0, hence V(t) ≤ V(0) for t ≥ 0. This implies that the composite
error e is bounded, and thus Φ and D>w̃[·]

1 , D>w̃[·]
2 are all bounded. Due to

Assumption 10.12, one can verify that ė in (10.43) is also bounded, and thus Φ̇,
D> ˙̃w[·]

1 , D> ˙̃w[·]
2 are bounded as well. Next, we show that the second-order time

derivative V̈ is bounded. One can calculate that V̈ = ë>Ke + ė>Kė. It is obvious
that the second term of V̈ is bounded, so we only need to show that ë is bounded.
We have

ë =

 ë1

D>(Ḟ>1 KΦ + F1
>KΦ̇)− kc1D>L ˙̃w[·]

1

D>(Ḟ>2 KΦ + F2
>KΦ̇)− kc2D>L ˙̃w[·]

2

 ,

where

ë1 = −KΦ̇− Ḟ1F1
>KΦ− F1(Ḟ

>
1 KΦ + F1

>KΦ̇) + kc1Ḟ1Lw̃[·]
1 + kc1F1L ˙̃w[·]

1

− Ḟ2F2
>KΦ− F2(Ḟ

>
2 KΦ + F2

>KΦ̇) + kc2Ḟ2Lw̃[·]
2 + kc2F2L ˙̃w[·]

2 ,

and Ḟ1 = diag{ d
dt ∂w1 f [1]· , . . . , d

dt ∂w1 f [N]
· } with

d
dt

∂w1 f [i]· =


∂w1

w1 f [i]1 ∂w2
w1 f [i]1

...

∂w1
w1 f [i]n ∂w2

w1 f [i]n


[

ẇ[i]
1

ẇ[i]
2

]

for i ∈ ZN
1 . Since Φ, D>w̃[·]

1 , D>w̃[·]
2 , Φ̇, D> ˙̃w[·]

1 , D> ˙̃w[·]
2 are all bounded, and

by (10.40) and Assumption 10.12, we have that Ḟ1, Ḟ2 are bounded, hence ë is
indeed bounded. Therefore, V̈ is bounded, and thus V̇ is uniformly continuous
in time t. By invoking Lemma 4.3 in [133], we have that V̇(e) → 0 as t → ∞.
Equivalently, ė>Ke→ 0 as t→ ∞. Since the argument above shows that ‖Φ‖ → 0
as t→ ∞, from (10.47) and the boundedness of F1, F2, D>w̃[·]

1 , D>w̃[·]
2 , we thus

have Lw̃[·]
1 → 0 and Lw̃[·]

2 → 0 as t → ∞. Furthermore, by Assumption 10.2,

Lw̃[·]
1 → 0 and Lw̃[·]

2 → 0 as t→ ∞ imply that w̃[i]
1 − w̃[j]

1 → 0 and w̃[i]
2 − w̃[j]

2 → 0

for all i, j ∈ ZN
1 [116, Corollary 2.5]. This further implies that w[i]

1 (t)− w[j]
1 (t)→

∆[i,j]
1 (t) and w[i]

2 (t)− w[j]
2 (t) → ∆[i,j]

2 (t). Therefore, the differences in the virtual

coordinates w[i]
1 and w[i]

2 of all robots converge to the desired value, and thus
the coordinated motion can be achieved. As in the proof of Theorem 10.5, the
global convergence property is attained due to the radial unboundedness of the
Lyapunov function V with respect to ‖e‖.
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Using the fact that limt→∞ KΦ = 0, limt→∞ Lw̃[·]
1 = 0 and limt→∞ Lw̃[·]

1 = 0,
we have

lim
t→∞

ẇ[i]
1 = lim

t→∞

[
0 · · · 1 0

]
X[i](t, ξ[i], w[·]

1 , w[·]
2 )

= lim
t→∞

[
0 · · · 1 0

] (
sfχ[i](ξ[i]) + kc1

crχ[i]
1 (t, w[·]

1 ) + kc2
crχ[i]

2 (t, w[·]
2 )
)

= lim
t→∞

[
0 · · · 1 0

] (
sfχ[i](ξ[i])

)

(10.30)
= lim

t→∞


[
0 · · · 1 0

]


(−1)n(vn+2∂w1 f [i]1 − vn+1∂w2 f [i]1 )
...

(−1)n(vn+2∂w1 f [i]n − vn+1∂w2 f [i]n )

(−1)nvn+2

(−1)n+1vn+1




=(−1)n(−1)nẇ∗1 = ẇ∗1 .

Similarly, we have limt→∞ ẇ[i]
2 = ẇ∗2 . Therefore, the desired motion on the surface

described in Problem 10.10 can be achieved.

Remark 10.14. We can also design time-varying coordination components in the
same way as (10.19), and the analysis is almost the same except for the use
of more complicated notations. Moreover, the above analysis can be further
extended for more parameters. For example, to define motion coordination
confined in a three-dimensional manifold (e.g., a cube) rather than a surface, one
may choose three parameters wi, i = 1, 2, 3. The design methodology and analysis
techniques for the two-parameter case can be directly adopted for this case with
more cumbersome notations. In addition, if one uses m ≥ 2 parameters, then one
also needs to choose m− 1 extra vectors v1, . . . , vm−1 as what has been shown
in (10.29) such that the wedge produce is well-defined. The detailed theoretical
development is similar to the two-parameter case and thus omitted. /

10.5 extending the vector field to incorpo-
rate collision avoidance

The focus of our work is the introduction and rigorous analysis of coordinating
guiding vector fields for following paths or navigating surfaces with motion
coordination as discussed above. However, to demonstrate the flexibility and
practicality of our approach, in this section, we briefly explain how our proposed
approach can incorporate existing collision avoidance algorithms [147]. For
example, we can modify the nominal guiding vector field (10.5) in a minimally
invasive way using safety barrier certificates [146], [147]. Without loss of generality,
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we only consider the coordinating guiding vector field for path following. Namely,
the number of parameters is 1, and thus there is only one virtual coordinate for
each robot.

For i 6= j, i, j ∈ ZN
1 , we define a function

hij(ξ
[i], ξ[j]) = ‖P(ξ[i] − ξ[j])‖2 − R2,

where R > 0 is the safe distance, P is the projection matrix P = I −
[ 0 0

0 1
]
∈

R(n+1)×(n+1) and I is the (n + 1)-by-(n + 1) identity matrix. The function hij
reflects whether two robots keep a safe distance. Therefore, we can define the
safe set S:

S = {(ξ[1]>, . . . , ξ[N]>)> ∈ R(n+1)N : hij(ξ
[i], ξ[j]) ≥ 0, ∀i 6= j}. (10.49)

Using hij, we can define a barrier function [6]:

Bij(ξ
[i], ξ[j]) :=

1
hij(ξ[i], ξ[j])

(10.50)

for i 6= j, i, j ∈ ZN
1 . We want to modify the nominal vector field X[i] such that

the new vector field denoted by X̌
[i] also enables collision-avoidance, which is

encoded in the safety barrier certificate [146], [147]. Specifically, the new vector

field X̌
[i] is obtained by minimizing ∑N

i=1 ‖X̌
[i]−X[i]‖2/2 subject to the constraint

Ḃij ≤ α/Bij where α > 0 is a constant, for j < i and i, j ∈ ZN
1 . Using (10.50)

and the equivalence Ḃij = −ḣij/h2
ij = −[2(ξ[i] − ξ[j])>P>(X̌[i] − X̌

[j]
)]/h2

ij, the
constraint Ḃij ≤ α/Bij can be rewritten as

(ξ[j] − ξ[i])>P>X̌[i]
+ (ξ[i] − ξ[j])>P>X̌[j] ≤ α

2
h3

ij. (10.51)

Therefore, the new vector field X̌ := (X̌
[1]>, . . . , X̌[N]>

)> ∈ R(n+1)N is calculated
by the quadratic program below:

min
X̌∈R(n+1)N

1
2

N

∑
i=1
‖X̌[i] −X[i]‖2

s.t. (10.51), ∀j ∈ Di,

(10.52)

where Di is the set of robots within distance R with respect to Robot i; i.e.,
Di := {j ∈ ZN

1 : hij ≤ 0, j 6= i}. Note that the definition of Di is based on
geographical distances and it is different from the neighborhood Ni, which is
based on a communication graph G. If Robot i keeps a safe distance to all other
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robots (i.e., hij ≥ 0 for all j 6= i), then the new vector field X̌
[i]

is the same as
the original one X[i]. In addition, since the virtual coordinate is not considered
in the constraint (10.51), there always holds X

[i]
n+1 = X̌

[i]
n+1 for i ∈ ZN

1 . Note that
this optimization problem is centralized in the sense that it requires the positions
and the nominal vector fields of all robots. We can change it to the following
distributed version:

min
X̌

[i]∈Rn+1

1
2
‖X̌[i] −X[i]‖2

s.t. (ξ[j] − ξ[i])>P>X̌[i] ≤ α

4
h3

ij, ∀j ∈ Di

(10.53)

for each robot i ∈ ZN
1 . In this optimization problem, Robot i only needs to

measure6 the positions p[j] = Pξ[j] of nearby robots for j ∈ Di, and does not
need to obtain other robots’ nominal vector field X[j], which is only possible via
communication (rather than measurement). If all the constraints in (10.53) are
satisfied, so are those in (10.52). Therefore, a feasible solution of (10.53) is also
a feasible solution of (10.52). Assume that the initial positions of robots are in
the safe set S, then it is guaranteed that all the robots will always be in the safe
set S [6], [146], [147], and one observes that the quadratic program (10.53) is

always feasible, since X̌
[i]

= 0 remains a trivial solution. This implies that a robot

can always keep stationary (i.e., ṗ[i] = PX̌[i]
= 0) to maintain a safe distance to

other robots even if the nominal vector field X[i] attempted to drive the robot to
move closer to others. The quadratic program (10.53) can be rewritten into the
following standard form

min
X̌

[i]∈Rn+1

1
2
X̌

[i]>
X̌

[i]
+ f>X̌[i]

s.t. AX̌
[i] ≤ b,

(10.54)

where the inequality is entrywise, and f = −X[i]. The matrix A ∈ R|Di |×(n+1)

and the vector b ∈ R|Di |, where the j-th row of A is Aj,: = (ξ[j] − ξ[i])>P>, and
the j-entry of b is bj = αh3

ij/4, for j ∈ Di. Note that the last column of A is a zero
vector.

6 In practice, the measurement is always inaccurate. However, the robustness property of control barrier
functions against perturbation [154] mitigate the consequence of inaccurate measurement.
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10.6 saturated controller for a dubins-car-
like model

If a robot’s dynamics can be approximately modeled by the single-integrator
model, then the coordinating guiding vector field in (10.5) can be used directly
as the velocity input to the robot. For the unicycle model, one can use feedback
linearization to transform it into the single-integrator model [168] to utilize
the guiding vector field directly. However, we will design a controller for a
model resembling a unicycle traveling at a constant speed (i.e., the Dubins-car
model) without using the feedback linearization technique. Note that the control
algorithm design idea in this section is applicable to robot models whose motions
are characterized by the robot’s orientations, such as the car-like model and
the underwater glider model [130]. These models (approximately) represent
many different robotic systems in reality, thus the design methodology is widely
applicable.

Different from the unicycle model, which allows backwards or stationary
motion, we use the following Dubins-car-like 3D model that describes fixed-wing
aircraft dynamics:

ṗ[i]1 = v cos θ[i], ṗ[i]2 = v sin θ[i], ṗ[i]3 = u[i]
z , θ̇[i] = u[i]

θ , (10.55)

where v is a constant airspeed, (p[i]1 , p[i]2 , p[i]3 )
>
∈ R3 is the position of the i-th air-

craft’s center of mass, θ[i] is the yaw angle, and u[i]
z and u[i]

θ are two control inputs
to be designed. Since the essential role of a guiding vector field is to provide
the desired yaw angle to guide the flight of a fixed-wing aircraft, the core idea
behind the control algorithm design is to align the aircraft’s flying direction with
that given by the guiding vector field. Without loss of generality, we assume that
there is only one parameter (i.e., we consider path following rather than surface
navigation). Therefore, the coordinating guiding vector field has an additional
coordinate, and thus one needs to add an additional virtual coordinate p[i]4 such

that the aircraft’s generalized position is (p[i]1 , p[i]2 , p[i]3 , p[i]4 ) ∈ R4. Correspondingly,

its generalized velocity is ( ṗ[i]1 , ṗ[i]2 , ṗ[i]3 , ṗ[i]4 ) = (v cos θ[i], v sin θ[i], u[i]
z , ṗ[i]4 ), where

ṗ[i]4 is virtual, acting as an extra design freedom. To align the aircraft heading
v(cos θ[i], sin θ[i]) with the counterpart of the coordinating guiding vector field
X[i], we need to “partially normalize” the vector field X[i] such that its first two
entries form a vector of the same length as v; that is,

vX[i] := vX[i]/

√
X
[i]
1

2
+X

[i]
2

2
.
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Subsequently, we need to design the yaw angular control input u[i]
θ such that

the aircraft heading v(cos θ[i], sin θ[i]) gradually aligns with the vector formed by
the first two entries of vX[i] (i.e., v(X[i]

1,X[i]
2)). For the last two entries of the

generalized velocity ( ṗ[i]1 , ṗ[i]2 , ṗ[i]3 , ṗ[i]4 ), one can simply equate them with those of
the “partially normalized” vector field vX[i] respectively:

ṗ[i]3 = u[i]
z = vX[i]

3 /

√
X
[i]
1

2
+X

[i]
2

2

ṗ[i]4 = vX[i]
4 /

√
X
[i]
1

2
+X

[i]
2

2
.

(10.56)

This control algorithm design method in Chapter 9 and [119] is extended here to
handle the issue with the actuator saturation in the yaw angular control input
u[i]

θ as described below. First, we define the saturation function Satb
a : R → R

by Satb
a(x) = x for x ∈ [a, b], Satb

a(x) = a for x ∈ (−∞, a) and Satb
a(x) = b for

x ∈ (b, ∞), where a, b ∈ R, a < b are some constants. Although the saturation
function Satb

a is not differentiable, it is Lipschitz continuous. For convenience, we
call the time interval when Satb

a(x(t)) = b the upper saturation period, and the time
interval when Satb

a(x(t)) = a the lower saturation period. We use the notation v to
denote the normalization of a vector v (i.e., v = v/‖v‖). We also define

X
[i]
p = (X[i]

1,X[i]
2)
>

, (10.57)

which is the vector formed by the first two entries of the normalized vector field

X[i]. Therefore, X[i]
p represents the orientation given by the vector field X[i]. In

addition, one can easily calculate that X[i]
p = (X[i]

1,X[i]
2).

Suppose we are given 3D physical desired paths phyP [i] ⊆ R3 parameterized
by (10.2), and the coordinating guiding vector field X[i] : R3+N → R3+1 in (10.5).

We denote the orientation of the aircraft by h[i] = h[i] = (cos θ[i], sin θ[i])
>

, the

(signed) angle difference directed from X
[i]
p to h[i] by σ[i] ∈ (−π, π] and define

the rotation matrix E =
[ 0 −1

1 0

]
. The following theorem states that the aircraft’s

orientation h[i] will converge to that of the vector field X
[i]
p asymptotically (i.e.,

σ[i] converges to zero).

Theorem 10.15. Assume that the vector field satisfies X[i]
1 (ξ[i])2 +X

[i]
2 (ξ[i])2 > γ > 0

for ξ[i] ∈ R3+1, i ∈ ZN
1 , where γ is a positive constant. Let the angular velocity control

input u[i]
θ in model (10.55) be

θ̇[i] = u[i]
θ = Satb

a(θ̇
[i]
d − kθh[i]

>
EX[i]

p ), (10.58)
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X[i]
p

h[i]

θ̇
[i]
d > 0

σ[i]

Figure 10.2: The signed angle σ[i].

where

θ̇
[i]
d = −X[i]

p

>
EẊ[i]

p /‖X[i]
p ‖, (10.59)

kθ > 0 is a constant, and a < 0, b > 0 are constants for the saturation function Satb
a. If

the angle difference σ[i] satisfies the following conditions:

1. The initial angle difference σ[i](t = 0) 6= π;

2. σ[i](t) ∈ [0, π) during the upper saturation period, and σ[i](t) ∈ (−π, 0] during the
lower saturation period,

then σ[i] will vanish asymptotically (i.e., σ[i](t)→ 0).

Proof. Since X
[i]
1 (ξ[i])2 +X

[i]
2 (ξ[i])2 > γ > 0 by assumption, the control inputs in

(10.56) are continuously differentiable, and thus Lipschitz continuous. One can
show that the yaw angular control input in (10.58) is also Lipschitz continuous.
Therefore, the control inputs guarantee that the solution to the dynamical system
in (10.55) exists and is unique (see Theorem 2.1). We define the orientation error

by e[i]o := h[i] −X
[i]
p and the Lyapunov-like function V = e[i]o

>
e[i]o /2. The time

derivative of V is

V̇ = ė[i]o
>e[i]o = ( ˙θ[i] − θ̇

[i]
d )h[i]

>
EX[i]

p (10.60)
(10.58)
=

(
Satb

a(θ̇
[i]
d − kθh[i]

>
EX[i]

p )− θ̇
[i]
d
)
h[i]
>

EX[i]
p , (10.61)

where θ̇
[i]
d is shown right below (10.58), and (10.60) utilizes the identities

˙
h[i] =

˙θ[i]Eh[i] and
˙

X
[i]
p = θ̇

[i]
d EX[i]

p (see Chapter 9). If the angular control input is not

saturated, then (10.61) is simplified to V̇ = −kθ(h[i]
>

EX[i]
p )2 ≤ 0, and V̇ = 0

if and only if the angle difference between h[i] and X
[i]
p is σ[i] = 0 or σ[i] = π.

Note that h[i]
>

EX[i]
p = sin σ[i]. Therefore, during the upper saturation period

when θ̇
[i]
d − kθh[i]

>
EX[i]

p > b, we have σ[i](t) > 0 =⇒ h[i]
>

EX[i]
p > 0 =⇒

V̇ =
(
b − θ̇

[i]
d
)
h[i]
>

EX[i]
p < −kθ(h[i]

>
EX[i]

p )2 ≤ 0. Similarly, during the lower

saturation period, we have V̇ =
(
a − θ̇

[i]
d
)
h[i]
>

EX[i]
p < −kθ(h[i]

>
EX[i]

p )2 ≤ 0
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(since now h[i]
>

EX[i]
p < 0). Therefore, V is always decreasing in all three cases,

and thereby the absolute value of the angle difference |σ[i]| is decreasing. Note

that V = 0 if and only if h[i] = X
[i]
p , or equivalently σ[i] = 0. In addition,

σ[i](t = 0) 6= π, hence V̇(t = 0) 6= 0. Using the Lyapunov argument [66, Theorem
4.1], it follows that V(t) converges to 0 as t→ ∞; equivalently, σ[i](t) converges
to 0 as t→ ∞.

Remark 10.16. The quantity Ẋ
[i]
p in (10.59) can be calculated by

Ẋ
[i]
p = J(X[i]

p )ζ̇[i], (10.62)

where J(X[i]
p ) ∈ R2×(3+N) is the Jacobian matrix of X

[i]
p with respect to the

generalized position ζ[i] = (ξ[i−w]>, w>)
>
= (x[i]1 , x[i]2 , x[i]3 , w>)

>
∈ R3+N , with

ξ[i−w] representing the vector obtained by deleting the last entry (i.e., the virtual
coordinate w[i]) of ξ[i] ∈ Rn+1. In addition, we can simplify the computation of
the Jacobian X

[i]
p to

J(X[i]
p ) = FJ(X[i]) = F(I −X[i] X[i]

>
)J(X[i])/‖X[i]‖

= F(I −X[i] X[i]
>
)J(pfχ[i] + kc

crχ[i])/‖X[i]‖

= F(I −X[i] X[i]
>
)
(

J(pfχ[i]) + kc J(crχ[i])
)
/‖X[i]‖,

where F =
[

1 0 0 0
0 1 0 0

]
and the Jacobians J(pfχ[i]) and J(crχ[i]) are shown in (10.63)

and (10.64), respectively (bi is the basis vector with the i-th entry being 1).

J(pfχ[i]) =


−k[i]1 0 0

0 −k[i]2 0

0 0 −k[i]3

k[i]1 f [i]1

′
(w[i]) k[i]2 f [i]2

′
(w[i]) k[i]3 f [i]3

′
(w[i])

04×(i−1)

− f [i]1

′′
(w[i]) + k[i]1 f [i]1

′
(w[i])

− f [i]2

′′
(w[i]) + k[i]2 f [i]2

′
(w[i])

− f [i]3

′′
(w[i]) + k[i]3 f [i]3

′
(w[i])

∑3
j=1[k

[i]
j φ

[i]
j f [i]j

′′
(w[i])− k[i]j f [i]j

′2
(w[i])]

04×(N−i)

 . (10.63)
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J(crχ[i]) =

 03×3 03×N

∂c[i](w)

∂ξ[i−w]

∂c[i](w)
∂w



=

 04×3

03×N

ai1 · · · ai(i−1) −∑N
j=1 aij ai(i+1) · · · aiN

 =

 04×3

03×N

−bi
>L

 .

(10.64)

Although (10.62) contains states ẇ[j] from all robots, we emphasize that each
robot only needs the information w[j] and ẇ[j] from its neighbors (i.e., j ∈ Ni), and
thus the control algorithm is distributed. This is because in (10.64), those terms aij
become zero if j is not a neighbor of the i-th robot, and thereby the corresponding
information w[j] and ẇ[j] is not required by the i-th robot. In the case of a cycle
communication graph, each robot only needs the information of w[j] and ẇ[j]

from its two neighbors, regardless of the size of the multi-robot system. /

Remark 10.17 (Interpretation of Condition 2). In the proof of the theorem, it has
been shown that

˙
X

[i]
p = θ̇

[i]
d EX[i]

p .

Since EX[i]
p is orthogonal to X

[i]
p , the quantity θ̇

[i]
d in (10.58) encodes how fast

the vector field changes its orientation along the trajectory of the aircraft (i.e.,

θ̇
[i]
d is the change rate of the vector field orientation). Since h[i]

>
EX[i] ≤ 1 in (10.58),

saturation may happen due to the possibly large magnitude of the term θ̇
[i]
d . If

upper saturation happens at t = t0, the change rate of the vector field orientation
θ̇
[i]
d demands a faster change than the aircraft can achieve; therefore, if σ[i](t0) >

0, then the vector field orientation encoded by X
[i]
p will “chase” the aircraft

orientation vector h[i] such that the angle difference σ[i](t) is decreasing (see Fig.
10.2). Thus as long as σ[i](t0) > 0, the Lyapunov function V is still decreasing.

However, if the saturation lasts for a long time such that X
[i]
p overtakes the

aircraft orientation vector h[i], the angle σ[i](t) will become negative and violate
Condition 2 in Theorem 10.15, thus the decreasing property of the Lyapunov

function V is not necessarily guaranteed; in this case, V̇ > −kθ

(
h[i]
>

EX[i]
p

)2
,

so V̇ may be negative or positive. Therefore, although Condition 2 in Theorem 10.15
might be difficult to check in practice, it conveys the core message that the saturation, albeit
allowed, should not last for a long time. However, this condition is only sufficient
(not necessary), while in practice, violating this condition does not immediately
entail instability of the algorithm. As the aircraft is guided by the vector field, the
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aircraft can re-orient its heading towards the desired path even if it temporarily
deviates from the desired path due to saturation or other constraints (such as
path curvature), as long as the change rate of the vector field orientation θ̇

[i]
d does

not saturate the control input persistently. The subsequent fixed-wing aircraft
experiment verifies the effectiveness of the control law. /

Nevertheless, we can remove Condition 2 in Theorem 10.15 by imposing an
upper bound on the magnitude of θ̇

[i]
d , as shown in Corollary 10.18.

Corollary 10.18. Suppose there exists a positive constant d satisfying d < min{−a, b},
where a, b are the threshold values of the saturation function Satb

a(·) in Theorem 10.15
(note that a < 0), such that the change rate of the vector field orientation |θ̇[i]d | ≤ d. Let
k̄θ := min{−a− d, b− d}, which is positive. If the positive gain kθ in (10.58) is chosen
within the range (0, k̄θ), then the angle difference σ[i] converges to 0 without requiring
Condition 2 in Theorem 10.15.

Proof. Given that kθ ∈ (0, k̄θ), one can calculate that max{θ̇[i]d − kθh[i]
>

EX[i]
p } =

d + kθ < b and min{θ̇[i]d − kθh[i]
>

EX[i]
p } = −d− kθ > a. Therefore, saturation

never happens and thus Condition 2 in Theorem 10.15 can be neglected.

To reduce the magnitude of θ̇
[i]
d and avoid possible saturation, one can scale

down the path parameter in the parametric functions in (10.2) (e.g. by changing
f [i]j (w[i]) to f [i]j (βw[i]), where 0 < β < 1), or choose another desired path with
a smaller curvature. Another approach to avoid input saturation is to add an
additional constraint |u[i]

θ | ≤ min{|a|, |b|} in the quadratic program in Section
10.5.

10.7 simulations and experiments

10.7.1 Simulations

In all simulations, the communication topology is a cycle graph, and thus each
robot is only allowed to communicate with its two adjacent neighbors. For
example, Robot 2 can only transmit its virtual coordinate w[2] to and receive the
virtual coordinates w[1] and w[3] from Robot 1 and Robot 3. Note that due to this
simple communication graph, both the communication load and the computation
load for each robot is much lower than that in the centralized scenario.

In the first simulation, we let N = 50 robots follow a 3D (i.e., n = 3) self-
intersected bent “∞”-shaped curve parameterized by x[i]1 = 15 sin(2w[i]), x[i]2 =

30 sin(w[i])
√

0.5(1− 0.5 sin2(w[i])) and x[i]3 = 5+ 5 cos(2w[i])− 2 for i ∈ ZN
1 . The

period of this closed curve is T = 2π and the desired differences between
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Figure 10.3: The first simulation results. On top, the trajectories of robots, where squares
and circles symbolize the trajectories’ initial and final positions respectively.

On the bottom left, the path-following errors e[i]j for i ∈ ZN
1 and j ∈ Zn

1 . On

the bottom right, the coordination error w[i] − w[j] − ∆[i,j] for i, j ∈ ZN
1 , i < j.

two adjacent robots’ virtual coordinates are T/(2N). We construct the desired
parametric differences ∆[i,j] from the reference w[i]∗ = (i− 1)T/(2N) for i ∈ ZN

1 .

The control gains for the coordinating vector field are: k[i]1 = k[i]2 = k[i]3 = 1, kc =
300 for i ∈ ZN

1 , where kc is large to accelerate the motion coordination. As shown
in Fig. 10.3, all robots follow the “∞”-shaped path successfully and keep desired
positions (in terms of w[i]) between each other. The path-following errors and the
coordination errors converge to zero eventually.

In the second simulation, we aim to show that our algorithm is also applicable
to path-following control of complicated and open curves (i.e., aperiodic curve),
and demonstrate its potential application to volume coverage in 3D [16]. To this
end, we choose a 3D Lissajous curve (i.e., n = 3) with irrational coefficients, of
which the parametric equations are x[i]1 = cos(nxw[i]) + mx, x[i]2 = cos(nyw[i]) +

my and x[i]3 = cos(nzw[i]) + mz for i ∈ ZN
1 , and the coefficients are chosen as
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nx =
√

2, ny = 4.1, nz = 7.1, mx = 0.1, my = 0.7, mz = 0. This is an open curve
bounded in a cube (as nx is irrational). Therefore, it is ideal for a volume coverage
task. To clearly illustrate this idea, we choose N = 3 robots and simulate for
100 seconds. The control gains for the coordinating guiding vector field are:
k[i]1 = k[i]2 = k[i]3 = kc = 1 for i ∈ ZN

1 . We construct the desired parametric
differences ∆[i,j] from the references w[i]∗(t) = (i− 1)2π/N, for i ∈ ZN

1 . Since
the Lissajous curve will fill the whole cube as the path parameter w[i] varies from
0 to infinity, for illustration purpose, we only plot part of the desired path where
w[i] ∈ [0, 30π] (see the magenta curve in Fig. 10.4). As seen in Fig. 10.4, the three
robots tend to cover the whole volume of the unit cube, and the path-following
errors and coordination errors are almost zero after 20 seconds.

In the third simulation, we show how different robots can follow different
desired paths while they still coordinate their motions to form some formation
shapes. We let N = 21 robots follow three different paths, where the first seven
robots follow a large circle of radius a > 0 parameterized by x[i]1 = a cos w[i],

x[i]2 = a sin w[i] for i = 1, . . . , 7, the last seven robots follow a small circle of

radius 0 < b < a parameterized by x[i]1 = b cos w[i], x[i]2 = b sin w[i] for i =
15, . . . , 21, and the remaining seven robots follow an ellipse with a semimajor
axis a and a semiminor axis b, parameterized by x[i]1 = a cos w[i], x[i]2 = b sin w[i]

for i = 8, . . . , 14. These three paths are concentric (see Fig. 10.5). The robots are
coordinated in a distributed way such that they are equally separated in the path
parameter w[i]; in other words, we construct the desired parametric differences
∆[i,j] from the references w[i]∗(t) = (i− 1)2π/N, for i ∈ ZN

1 . Other parameters

are chosen as a = 10, b = 5, k[i]1 = k[i]2 = 1, kc = 100 for i ∈ ZN
1 . An interesting

feature is that during the steady-state, these robots will not overlap with each
other, since overlapping happens if any two of the robots’ virtual coordinates are
equal, while the distributed coordination guarantees that the adjacent neighbors
satisfy |w[i] − w[j]| = 2π/N, where i and j are any neighboring indices. These
robots successfully generate varying formation shapes: they cluster in different
parts of the three desired paths. After 40 seconds, the path-following errors and
the coordination errors are almost 0.

In the fourth simulation, we show how multiple robots converge to a torus
and form a desired pattern while they maneuver on the torus. Specifically, we
manually select N = 67 reference points (w[i]∗

1 , w[i]∗
2 ), i ∈ ZN

1 such that they form
a pattern resembling the four letters “ICRA”. Then based on these reference points,
one can calculate the desired parametric differences ∆∗1 , ∆∗2 ∈ R67. Note that
Robot i only needs to know the desired parametric differences with respect to its
neighbors; i.e., ∆[i,j]

1 , ∆[i,j]
2 for j ∈ Ni. These 67 robots are required to converge to

a torus of which the parametric equations are x[i]1 = (2 + cos w[i]
1 ) cos w[i]

2 , x[i]2 =

(2 + cos w[i]
1 ) sin w[i]

2 , x[i]3 = sin w[i]
1 for i ∈ ZN

1 (hence n = 3 in Theorem 10.13).
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They are also required to maneuver on the torus in the sense that ẇ∗1 = ẇ∗2 = −1.
By Theorem 10.13, the extra vector v is thus chosen as v = (0, 0, 0,−1, 1). Other
parameters are chosen as k[i]1 = k[i]2 = 1, kc = 10 for i ∈ ZN

1 . The simulation
results are shown in Fig. 10.6.

10.7.2 Experiments with multiple fixed-wing aircraft

In this experiment, two autonomous fixed-wing aircraft (i.e., Autonomous
Opterra 1.2m) are employed to validate Theorem 10.15. The aircraft are
equipped with open-source software/hardware components developed from
Paparazzi [47]. The codes related to the proposed algorithm are in [26]. We
choose the following 3D Lissajous curve f [i]1 (w) = 225 cos(w[i]), f [i]2 (w[i]) =

225 cos(2w[i] + π/2), f [i]3 (w[i]) = −20 cos(2w[i]), for i = 1, 2, which is a bent
“∞”-shaped path. The mission requires both aircraft to have ∆[1,2] = ∆[2,1] = 0;
i.e., to fly in a tight formation. The overlapping at steady state is avoided by
biasing the GPS measurement of one aircraft by a constant distance of one meter
in the horizontal plane; i.e., when the aircraft achieve ∆[1,2] = ∆[2,1] = 0, they are
displaced physically. We choose k[i]1 = k[i]2 = 0.002, k[i]3 = 0.0025, kc = 0.01, kθ = 1,
for i = 1, 2, and the communication frequency is 10 Hz. In the experiment, the
weather forecast reported 14 degrees Celsius and a South wind of 10 km/h. In
Figure 10.7, the telemetry shows that both aircraft converge to fly together and
follow the path. The experiment shows that once an aircraft flies far ahead of
its partner, the algorithm guides the airplane to deviate from the curve to travel
more distances to “wait” for its partner. Nevertheless, these deviations from the
desired path are within the order of one or two meters (see Figure 10.8).

Note that the employed aircraft do not control their ground speeds. In fact,
they have a reference signal in their throttle to keep a safe airspeed, and the
aircraft increase/decrease such a reference to ascend/descend. A traditional
trajectory tracking algorithm would force the aircraft to track an open-loop point(

f [i]1 (t), f [i]2 (t), f [i]3 (t)
)

; i.e., it requires controlling the airspeed/ground speed of
the aircraft. Such a requirement is demanding if the aircraft are not equipped
with the required sensors or actuators (e.g., spoilers/flaps), and the wind always
affects the speed of the airplane. By contrast, our guidance algorithm is free from
such a requirement since the parameter w is in closed-loop with the aircraft state,
and thereby adapting automatically to the position and velocity of the aircraft.

10.8 conclusions
In this chapter, we address the problem of multi-robot coordinated navigation
using a new guiding vector field. The proposed approach enables an arbitrary
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number of robots to follow or navigate possibly different desired paths or surfaces
and achieve motion coordination in a distributed way. Specifically, we derive
time-invariant and time-varying coordinating guiding vector fields to rigorously
guarantee the convergence and motion coordination on desired paths or surfaces
from all initial positions (i.e., global convergence). This is achieved by exploiting
the higher-dimensional guiding vector field with path or surface parameters as
virtual coordinates, and employing distributed consensus algorithms to render
the virtual coordinate differences (i.e., parametric differences) converging to the
pre-specified desired ones in a multi-robot system. Based on the coordinating
guiding vector field, a control law is designed for a nonholonomic Dubins-car-like
robot model, which takes into account the actuation saturation. Moreover, we
also elaborate on how to effectively integrate the coordinating guiding vector
field with a safety barrier certificate to realize collision avoidance among robots.
Extensive simulation examples verify the effectiveness of our approach and
showcase possible practical applications. Furthermore, we conduct outdoor
experiments with multiple fixed-wing aircraft to demonstrate our algorithm’s
practical value including its robustness against wind perturbation, actuation
saturation, etc. There are many fascinating features of our approach as outlined
in Section 10.1.2.
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(a)

(b) (c)

(d) (e)

Figure 10.4: The second simulation results. Squares and circles symbolize trajectories’
initial and final positions, and the solid blue lines are the trajectories during
the last 30 time steps. (a) The trajectories of three robots follow an open
Lissajous curve with irrational coefficients. The magenta curve represents
part of the Lissajous curve. (b) and (c) correspond to the Y-Z side views of the
trajectories at time 9.4 and 76.8 seconds, respectively. (d) The path-following

errors e[i]j for i ∈ ZN
1 and j ∈ Zn

1 . (e) The coordination error w[i] −w[j] − ∆[i,j]

for i, j ∈ ZN
1 , i < j. Only 10 seconds of data are shown for clarity in (d) and

(e).
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(a)

(b) (c)

Figure 10.5: The third simulation results. (a) The trajectories of robots, where squares
and ∗ symbolize the trajectories’ initial and final positions respectively. The
dashed black line shows the communication links between robots (i.e., a cycle

graph). (b) The path-following errors e[i]j for i ∈ ZN
1 and j ∈ Zn

1 . (c) The

coordination error w[i] − w[j] − ∆[i,j] for i, j ∈ ZN
1 , i < j. Only 20 seconds of

data are shown for clarity in (b) and (c).
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 10.6: The fourth simulation results. (a)-(c) Sixty-seven robots, represented by red
dots, converge to and maneuver on a torus while they form the pattern
“ICRA” at different time instants. The magenta curves are the trajectories

of different robots. (d) The surface-convergence errors φ
[i]
j for i ∈ ZN

1 and
j ∈ Zn

1 converge to zero eventually. Only 10 seconds of data are shown for

clarity. (e)-(f) The coordination errors w[i]
1 − w[j]

1 − ∆[i,j]
1 and w[i]

2 − w[j]
2 − ∆[i,j]

2
for the two parameters for i, j ∈ ZN

1 , i < j converge to zero eventually. (g)-

(h) The parametric velocities ẇ[i]
1 and ẇ[i]

2 converge to the desired values
ẇ∗1 = ẇ∗2 = −1 denoted by black dashed lines. Only 10 seconds of data are
shown for clarity.
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Figure 10.7: Two aircraft (blue and red trajectories) fly together and follow a 3D bent
“∞”-shaped path. Although the subfigures show that the aircraft’s positions
are overlapped, in reality, the same position corresponds to two different
ones since the aircraft’s GPS receptors are biased with respect to each other
by one meter in the XY plane.
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Figure 10.8: Path-following errors (in XYZ) of the two aircraft (blue and red) to the desired
3D path, and errors with respect to the desired ∆w = 0. The horizontal axes
denote time in seconds.





11 C O N C L U S I O N S A N D F U T U R E
R E S E A R C H

This thesis presents extensive theoretical results and applications of guiding
vector fields for robot motion control.

From the theoretical perspective, we study a sequence of interrelated topics,
which include the relationship between the vanishing of the level value and
the convergence of trajectories to the zero-level set, the attractiveness and
stability properties of the desired path and singular sets, the robustness of
the guiding vector field, the domain of attraction of the desired path, the
existence of singular points of the guiding vector field and the existence of
trajectories not converging to the desired path.

From the application perspective, we show several results including how
to integrate path following and collision avoidance using smooth bump func-
tions, how to create a singularity-free guiding vector field for robot navigation,
and how to coordinate an arbitrary number of robots in a distributed way
such that they maneuver and maintain predefined parametric distances. All
these applications are supported by rigorous mathematical guarantees and
verified in various simulation settings and real-robot experiments.

In what follows we summarize the main contributions of each chapter of
this thesis and provide some recommendations for future research.

11.1 conclusions
Part I of the thesis includes Chapter 3 to Chapter 7, and this part introduces the
theoretical foundation of vector-field guided path-following algorithms.

In Chapter 3, motivated by the fact that the desired path is described by the
zero-level set of a sufficiently smooth function, we study the problem regarding
whether the vanishing of the level value implies the convergence of trajectories
of an autonomous system to the zero-level set. We show that in general, this
implication does not hold unless some additional conditions identified in this
thesis were imposed. These conditions serve as the standing assumptions for the
subsequent theoretical development. Note that this result is independent of the
vector-field guided path-following problem, since in many control problems, the
target set of interest is the zero-level set of a Lyapunov function.

247
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In Chapter 4, we specifically focus on the 3D guiding vector field, and show
the asymptotic and exponential convergence of the path-following error for both
bounded and unbounded desired paths. We also prove the local input-to-state (ISS)
stability of the error dynamics, which is then utilized for the control algorithm
design for a fixed-wing aircraft model. Note that the analysis techniques for the
3D guiding vector field can be straightforwardly extended for higher-dimensional
guiding vector fields.

Chapter 5 and Chapter 6 focus on some topological aspects of the vector-field
guided path-following algorithms. Specifically, we generalize the guiding vector
fields on Euclidean spaces to those defined on a general smooth Riemannian
manifoldM. These guiding vector fields are imperative in control on manifolds,
such as robot arm control in joint spaces. We study the autonomous system
ξ̇(t) = χ(ξ(t)), where χ is the guiding vector field defined onM. In particular,
under the assumption that the desired path is compact (i.e., homeomorphic to
the unit circle S1), we analyze the stability and attractiveness of the desired path
and the singular set. It turns out that in this general case, the desired path is still
asymptotically stable and the singular set is non-attractive under some conditions.
In addition, we show that global convergence of trajectories to the desired path
in the Euclidean space Rn is not possible, and singular points always exist. This
is a consequence of the more general result: the domain of attraction of the
compact desired path is homotopy equivalent to the unit circle S1. Chapter 6 then
strengthens this result and shows that the domain of attraction is homeomorphic
to Rn−1 × S1, where n is the dimension of the ambient manifold M. We also
show in Chapter 5 the existence of trajectories diverging away from the desired
path. Specifically, we consider the Euclidean space Rn, where n ≥ 3, and prove
that for any ball containing the desired path, there always exists at least one
trajectory starting from the boundary of the ball that does not converge to the
desired path.

In Chapter 7, we refine the dichotomy convergence property of trajectories in
the vector-field guided path-following problem. It has been shown in previous
chapters that trajectories either converge to the desired path or the singular set,
but it is of interest to ask the question whether trajectories converging to the
singular set actually converge to a single point of the set. We show that if the level
functions are real analytic, then the answer to the previous question is affirmative.

Part II of the thesis includes Chapters 8, 9 and 10, and this part focuses on
various applications of the vector-field guided path-following algorithms.

In Chapter 8, we consider the practical scenario where the desired path is
occluded by a finite number of static or moving obstacles of arbitrary shapes. We
design a new guiding vector field by combining two guiding vector fields via
smooth bump functions to achieve both the tasks of path following and collision
avoidance. A switching vector field is also proposed to deal with the issue of
undesirable singular points where a trajectory is trapped. The path-following
and obstacle-avoidance capabilities are provably guaranteed to be effective.
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Chapter 9 is motivated by the impossibility result of global convergence of
trajectories to a self-intersecting or compact desired path (precisely, homeomor-
phic to the unit circle S1), as elaborated in Chapter 5 and Chapter 6. Since this
impossibility result is inherent in the topology of the desired path, we then
propose an approach to change the topology of the desired path by “cutting” and
“stretching” it to become homeomorphic to the real line R. We further prove
that this transformation gives rises to a higher-dimensional guiding vector field
that has no singular points in the whole Euclidean space, and we prove that
trajectories from all initial conditions will converge to the desired path, even if it
is self-intersecting. This approach requires a parametric equation of the desired
path, and the global convergence is rigorously guaranteed by the introduction
of a transformation operator and the extended dynamics. Five features of our
approach are highlighted in Chapter 9 and we demonstrate that our approach is
a combined extension of both conventional vector-field guided path-following
algorithms and trajectory tracking algorithms. Experiments with fixed-wing
aircraft under wind perturbation validate the theoretical results and showcase its
practical effectiveness.

Chapter 10 shifts the focus from a single-robot in previous chapters to a multi-
robot system. In this chapter, we extend the higher-dimensional singularity-free
guiding vector field proposed in Chapter 9 to address the problem of multi-robot
coordinated navigation on different desired paths or surfaces. We utilize the
additional virtual dimension of the singularity-free guiding vector field, and
apply a consensus algorithm to this additional dimension. Since the additional
dimension is closely related to the parameters of the desired paths or surfaces,
by controlling this dimension via local interactions of neighboring robots, the
robots’ motions are coordinated implicitly such that they can follow the desired
paths or surfaces and maintain predefined parametric distances between each
other. As a result, time-invariant and time-varying coordinating guiding vector
fields are derived and motion coordination from all initial positions is guaran-
teed. Based on the coordinating guiding vector field, a control algorithm for a
nonholonomic Dubins-car-like model, taking into account input saturation, is
designed. Extensive simulation examples and experiments verify the theoretical
results.

11.2 future research
In this section, we elaborate on the limitations of our work in this thesis, and
recommend some possible future research problems.

In Chapters 4, 8, 9 and 10, a control algorithm is designed for a unicycle
robot model or a Dubins car model based on guiding vector fields. The design
principles are the same: steer the heading of the robot such that it eventually
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aligns with the heading given by the guiding vector field. This control algorithm
design principle is simple and effective for kinematics models of which the
motion is essentially characterized by the heading. However, it is our future work
to design effective control algorithms for more complicated robot kinematics or
even dynamics models, such as those corresponding to underactuated marine
vessels in [9]. As preliminary results, two more control design examples are
shown in Appendix A.

In Chapters 5 and 6, the topological analysis is conducted only for compact
asymptotically stable desired paths. Although we have shown that the two results,
Lemma 5.23 and Theorem 6.15, related to the domain of attraction of the desired
paths, do not hold for non-compact desired paths, it is interesting but probably
challenging to characterize the domain of attraction for non-compact desired
paths.

In Chapter 7, it is shown that if the level function is real analytic, then conver-
gence of trajectories to the singular set is equivalent to convergence to a single
point in the set (i.e., Theorems 7.5 and 7.7). However, this result is proved for
guiding vector fields on the Euclidean space Rn, while it is unclear if this con-
clusion still holds for guiding vector fields defined on a general Riemannian
manifold M in Chapters 5 and 6, and it is of theoretical interest to find out
the answer. We anticipate that a major theoretical difficulty is probably due to
the use of a partition of unity [77, Chapter 2] for the manifold. A partition of
unity involves non-real analytic functions, which can violate the real analyticity
condition.

In Chapter 8, the problem of path-following with collision-avoidance is con-
sidered in a 2D space. Although a practical approach is indicated for the higher-
dimensional spaces, the rigorous mathematical guarantees are not provided.
To provide the guarantees would probably be challenging due to the fact that
the behavior of nonlinear systems in higher-dimensional spaces can be very
complicated (e.g., even leading to chaos).

It has been shown that the additional virtual coordinates in Chapters 9 and 10

lead to many advantages of the path-following algorithms, such as guarantees of
global convergence to the desired path. However, in practice, if the parameters of
the path-following algorithms are not properly chosen, the virtual coordinates
can change very fast. This would result in demanding control commands for a
real aircraft, and may lead to control saturation. It would be of practical interest
to improve the algorithm by limiting the change rate of the virtual coordinate, or
to introduce an automatic-tuning method for the parameters.

In Chapter 10, we only consider undirected and fixed communication graphs
among robots, but it is of practical and theoretical interest to take into account
directed and changing communication graphs. Additionally, communication of
the virtual coordinates among agents is necessary, while it is unclear how the co-
ordination can be achieved by using only relative measurements of some physical
quantities without explicit communication. For some simple desired paths, such
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as a circle, it is possible to estimate the virtual coordinates of neighboring robots
by measuring the relative positions without explicit communication, but for more
complicated paths, such as a Lissajous path, the estimation might be challenging.

In this thesis, we only focus on those guiding vector fields consisting of
propagation terms and convergence terms with specific forms shown in (1.2),
(4.2), (9.2) and (5.6). It would be of interest to study guiding vector fields of
other forms, such as those reviewed in Sections 1.1.4 and 1.1.5. In particular, it
would be of theoretical interest to study the topological properties of guiding
vector fields with time-varying terms when the desired path depends on time
(e.g., [50], [74]). In addition, in Chapter 5, when we define a desired path
on an n-dimensional smooth Riemannian manifold, we still use the functions
(φ1, . . . , φn−1)

> :M→ Rn−1. This could be a restriction. A more general form
is to change the codomain of (φ1, . . . , φn−1)

> to an (n− 1)-dimensional smooth
manifolds N . Consequently, the design of the guiding vector field becomes more
flexible. We are currently conducting further investigation regarding this aspect.

Note that the VF-PF algorithms studied in this thesis are designed for the
problem formulation in Problem 1.1. If the desired path is changed from a
one-dimensional manifold to a trajectory (i.e., a function of time), then one can
use many existing trajectory tracking algorithms [46], [75], [103] to address the
path-following problem if the image of the trajectory is the same as the desired
path. Similarly, if one can find an exo-system such that the reference output
corresponds to the desired path, then one can also utilize many existing output
regulation algorithms [57], [58], [61]. Therefore, it would be of interest to study
how to design a trajectory or an exo-system corresponding to a given (geometric)
desired path.





Part III

A P P E N D I X





A C O N T R O L A LG O R I T H M S F O R A
3 D U AV M O D E L A N D A
DY N A M I C S M O D E L

Our proposed guiding vector field method can still be applied to more complex
models, such as a 3D UAV model (Section A.1) and a dynamic aircraft model
(Section A.2).

a.1 3d uav model
Consider a nonholonomic 3D UAV model [81], [8, Eq. (9.7)] as follows:

ẋ(t) = va(t) cos ψ(t) cos γ(t) (A.1a)

ẏ(t) = va(t) sin ψ(t) cos γ(t) (A.1b)

ż(t) = va(t) sin γ(t) (A.1c)

γ̇(t) = wγ(t) (A.1d)

ψ̇(t) = wψ(t), (A.1e)

where (x, y, z) is the UAV’s position, and γ and ψ are the pitch angle and
the yaw angle, respectively. The components of the control input u(t) =
(va(t), wγ(t), wψ(t))> correspond to the airspeed, the pitch angular speed and the
yaw angular speed, respectively. The model (A.1) can be written in an input-affine
form as follows: 

ẋ(t)

ẏ(t)

ż(t)

γ̇(t)

ψ̇(t)


=



cos γ(t) cos ψ(t) 0 0

cos γ(t) sin ψ(t) 0 0

sin γ(t) 0 0

0 1 0

0 0 1

 ︸ ︷︷ ︸
u(t)

 va(t)

wγ(t)

wψ(t)

 . (A.2)

255
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Consider the point (L, 0, 0)> in the traditionally defined UAV body frame, where
L 6= 0, and redefine the system output as

xL(t) = x(t) + L cos ψ(t) cos γ(t)

yL(t) = y(t) + L sin ψ(t) cos γ(t)

zL(t) = z(t) + L sin γ(t).

(A.3)

Therefore,ẋL(t)

ẏL(t)

żL(t)

 =

cos γ(t) cos ψ(t) −L sin γ(t) cos ψ(t) −L cos γ(t) sin ψ(t)

cos γ(t) sin ψ(t) −L sin γ(t) sin ψ(t) L cos γ(t) cos ψ(t)

sin γ(t) L cos γ(t) 0


︸ ︷︷ ︸

M(γ,ψ)

 va(t)

wγ(t)

wψ(t)


︸ ︷︷ ︸

u(t)

.

(A.4)
Assume that the UAV is not allowed to fly vertically; i.e., the pitch angle γ 6=
±π/2. Then det M(γ, ψ) = −L2 cos γ 6= 0. Therefore, after introducing the new
control input uL(t) = (ẋL(t), ẏL(t), żL(t))>, we can rewrite (A.4) as

u(t) = M(γ, ψ)−1uL(t) =


cos γ(t) cos ψ(t) cos γ(t) sin ψ(t) sin γ(t)

− sin γ(t) cos ψ(t)
L − sin γ(t) sin ψ(t)

L
cos γ(t)

L

− sin ψ(t)
L cos γ(t)

cos ψ(t)
L cos γ(t) 0

 uL(t).

(A.5)

Let uL(t) = χ(ξL(t)), where χ(·) is the vector field in (4.2) in Chapter 4, and
ξL(t) = (xL, yL, zL) in (A.3). Thus, the control input is

u(t) =

 va(t)

wγ(t)

wψ(t)

 =


cos γ(t) cos ψ(t) cos γ(t) sin ψ(t) sin γ(t)

− sin γ(t) cos ψ(t)
L − sin γ(t) sin ψ(t)

L
cos γ(t)

L

− sin ψ(t)
L cos γ(t)

cos ψ(t)
L cos γ(t) 0

 χ(ξL(t)).

(A.6)
Combining (A.2) and (A.6), we obtain the following closed-loop kinematics:

ẋ

ẏ

ż

γ̇

ψ̇


=



cos2 γ cos2 ψ cos2 γ cos ψ sin ψ cos γ sin γ cos ψ

cos2 γ cos ψ sin ψ cos2 γ sin2 ψ cos γ sin γ sin ψ

cos γ sin γ cos ψ cos γ sin γ sin ψ sin2 γ

− sin γ cos ψ
L − sin γ sin ψ

L
cos γ

L

− sin ψ
L cos γ

cos ψ
L cos γ 0


χ(ξL(t)),

where ξL(t) = (xL, yL, zL) is shown in (A.3). Using this control law (A.6), we can
enable the point (L, 0, 0)> in the UAV body frame to follow the desired path; the
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idea of the control law design is the same as using feedback linearization for a
unicycle robot model. We use the same helix as the second example of Chapter 4

as the desired path and simulate the effects of the control algorithm (A.6) (see
Fig. A.1).
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Figure A.1: (a) The trajectory (pink curve) ξL(t) = (xL, yL, zL) converges to the helix. (b)
The path-following errors converge to zero.

a.2 a control algorithm design example for a
dynamics model

The proposed guiding vector field method may still be applied to more complex
models, such as dynamic aircraft models, in an ad hoc manner. For example, we
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consider the dynamic aircraft model given in the classical textbook [8, Eq. (9.24)]
as follows (for simplicity, the time t is omitted):

ẋ = va cos ψ cos γ (A.7a)

ẏ = va sin ψ cos γ (A.7b)

ż = va sin γ (A.7c)

v̇a =
Fthrust

m
−

Fdrag

m
− g sin γ (A.7d)

ψ̇ =
Flift
m va

sin φ

cos γ
(A.7e)

γ̇ =
Flift
m va

cos φ− g
va

cos γ (A.7f)

Flift =
1
2

ρv2
aSCL (A.7g)

Fdrag =
1
2

ρv2
aS(CD0 + KC2

L), (A.7h)

where the control inputs are thrust, lift coefficient, and bank angle (Fthrust, CL, φ)>.
The variables x, y, z, va, ψ and γ have the same meanings as in Section A.1. The
constants m and g denote the mass and gravity constant, respectively. Lift force
Flift and drag force Fdrag are expressed in (A.7g) and (A.7h), respectively, where
K is the induced drag factor determined by aerodynamic efficiency, CD0 is the
zero-lift drag coefficient, S is the platform area of the UAV wing and ρ is the air
density. Comparing (A.7) with (A.1), one observes that a possible control solution
is to let the previous control input (A.6) be the desired kinematics control input
in this model. Specifically, we add a superscript d to represent the desired values
and rewrite (A.6) as

ud(t) =


vd

a(t)

wd
γ(t)

wd
ψ(t)

 =


cos γ(t) cos ψ(t) cos γ(t) sin ψ(t) sin γ(t)

− sin γ(t) cos ψ(t)
L − sin γ(t) sin ψ(t)

L
cos γ(t)

L

− sin ψ(t)
L cos γ(t)

cos ψ(t)
L cos γ(t) 0

 χ(ξL(t)),

(A.8)
where ξL = (xL, yL, zL)

> is shown in (A.3). Thus, in view of (A.7d), (A.7e) and
(A.7f), it is desirable that

v̇a = f (vd
a , va) (A.9a)

ψ̇ = ωd
ψ (A.9b)

γ̇ = ωd
γ, (A.9c)
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where f (vd
a , va) is a continuously differentiable function such that va → vd

a as
t→ ∞. Suppose that the desired airspeed vd

a changes slowly, then we can let

f (vd
a , va) = Kv(vd

a − va), (A.10)

where Kv is a positive gain. Relating (A.7d), (A.7e), (A.7f), (A.9a), (A.9b), (A.9c)
and (A.10), we obtain the following equations

Fthrust
m
−

Fdrag

m
− g sin γ = Kv(vd

a − va)

Flift
m va

sin φ

cos γ
= ωd

ψ

Flift
m va

cos φ− g
va

cos γ = ωd
γ.

Solving the equation, one obtains the lift coefficient as follows:

CL =
2m

ρvaS

√
(ωd

ψ cos γ)2 + (g cos γ/va + ωd
γ)

2. (A.11)

The thrust is

Fthrust = Fdrag + mg sin γ + Kv(vd
a − va)

=
1
2

ρv2
aS(CD0 + KC2

L) + mg sin γ + Kv(vd
a − va),

(A.12)

where CL is computed by (A.11). The bank angle is

φ = atan2(φs, φc), (A.13)

where atan2 is the four-quadrant inverse tangent function and

φs =
2ωd

ψmva cos γ

ρv2
aSCL

φc =
2mva(g cos γ/va + ωd

γ)

ρv2
aSCL

with CL computed by (A.11). Therefore, the dynamic control input udyn =

(Fthrust, CL, φ)> is attained.
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S U M M A R Y

Using a designed vector field to guide robots to follow a given geometric desired
path has found a range of practical applications, such as underwater pipeline
inspection, warehouse navigation and highway traffic monitoring. It is thus in
great need to build a rigorous theory to guide practical implementations with
formal guarantees. It is even so when multiple robots are required to follow
predefined desired paths or maneuver on surfaces and coordinate their motions
to efficiently accomplish repetitive and laborious tasks.

In this thesis, we propose and study a specific class of vector field, called guiding
vector fields, on the Euclidean space and a general Riemannian manifold, for single-
robot and multi-robot path following and motion coordination. A guiding vector
field is generally composed of two terms: a convergence term which enables
the integral curves of the vector field to converge to the desired path, and a
propagation term which is tangent to the desired path such that propagation along
the desired path is ensured. The guiding vector field is completely determined
(up to positive coefficients) by a number of twice continuously differentiable
real-value functions (called level functions). The intersection of the zero-level sets
of these level functions is the desired path to be followed. Since the guiding vector
field is not the gradient of any potential function, and also due to the existence of
singular points where the vector field vanishes, the theoretical analysis becomes
challenging. Therefore, in Part I of the thesis, we derive extensive theoretical
results. And then in Part II, we elaborate on how to utilize guiding vector fields
with variations in practical applications.

In Part I, first, motivated by the observation that the desired path is the inter-
section of the zero-level sets of level functions, we study the relationship between
the values of the level functions, called the level values, and the convergence of
the integral curves of the vector field to the desired path. It turns out that even
when the level values along an integral curve converge to zero, the integral curve
itself may not converge to the desired path. We then provide some necessary as-
sumptions that are adopted throughout the thesis to guarantee that the vanishing
of the level values along the integral curve indeed entails the convergence of the
integral curve to the desired path. These assumptions facilitate the subsequent
analysis as we only need to study the convergence result of the level values. We
also strengthen the existing dichotomy convergence result which states that the
integral curves either (locally) converge to the desired path or the singular set (i.e.,
the set of all singular points). We show that real analyticity of the level functions
is a sufficient condition to reach the refined conclusion that convergence to a
singular set implies convergence to a single point of the set.
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Next, we study the autonomous system where the right-hand side is a guiding
vector field defined on the n-dimensional Euclidean space Rn or a general smooth
Riemannian manifoldM. Specifically, we show the exponential convergence of
path-following errors in the vicinity of the desired path, and the local input-to-
state stability (ISS) of the path-following error dynamics when the guiding vector
field is on the 3D Euclidean space. These results can be straightforwardly applied
to guiding vector fields defined on higher-dimensional Euclidean spaces. In
addition, the local ISS property justifies the effectiveness of the control algorithm
design principle used for many robot kinematics models, such as the unicycle
model. We then generalize the guiding vector field from a Euclidean space
to a general smooth Riemannian manifold. The generalized guiding vector
field is imperative for path-following in some abstract configuration space (e.g.,
robot arm joint space). We show that the dichotomy convergence result and
the asymptotic stability of desired paths still hold. We then turn to the special
case where the desired path is homeomorphic to the unit circle S1 and study the
guiding vector field from a topological viewpoint. We prove that the existence of
singular points is inherent in the topology of the desired path in Euclidean spaces.
Especially, in Rn, where n ≥ 3, there always exists a trajectory that starts from
the boundary of any ball containing the desired path and does not converge to
the desired path. Moreover, in the general n-dimensional Riemannian manifold
case, the domain of attraction of the desired path is homeomorphic to Rn−1 × S1.

In Part II, we develop variations of guiding vector fields, and demonstrate
their use in three practical applications: path following with obstacle avoidance,
desired path global convergence and multi-robot motion coordination. In the
first application, we consider the practical situation where the desired path is
partly occupied by a finite number of static or moving obstacles. We use a smooth
bump function to combine two guiding vector fields, one for path following
and the other for collision avoidance. We show that additional singular points
appear in many cases even though the combined guiding vector field is still suffi-
ciently smooth. Nevertheless, we provide theoretical conditions and a switching
mechanism such that the path-following and obstacle-avoidance behaviors are
guaranteed to be effective. This approach is reactive and general, hence suitable
for real-time applications and can deal with obstacles of arbitrary shapes. In
the second application, motivated by the topological analysis (in particular, the
existence of singular points) of guiding vector fields in Part I, we propose a novel
idea to transform the topology of the desired path such that the bounded or
self-intersecting desired paths become unbounded and non-self-intersecting (pre-
cisely, homeomorphic to the real line R). This approach leads to a singularity-free
higher-dimensional guiding vector field that can guarantee global convergence
of trajectories to the desired path. The additional dimension corresponds to a
virtual coordinate that represents the parameter of the desired path. In the last
application, we exploit this additional dimension of the singularity-free guiding
vector field to enable the distributed motion coordination and navigation of a
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group of an arbitrary number of robots on different desired paths or surfaces.
The resulting algorithm is distributed, scalable, and low-cost in communication
and computation. All these applications have formal guarantees and are also sup-
ported by extensive simulation examples and real experiments with fixed-wing
aircraft.





S A M E N VAT T I N G

Het gebruik van een beoogd vectorveld dat de robots leidt om een geometrisch
gewenst pad te volgen is terug te vinden in een scala aan praktische toepassin-
gen, waaronder inspectie aan onderwater pijplijnen, navigatie in magazijnen en
verkeersmonitoring op snelwegen. Het is hiervoor noodzakelijk om een nauwge-
zette theorie te ontwikkelen welke formele garanties kan bieden voor practische
implementaties. Het is nog meer van belang wanneer van meerdere robots wordt
verlangd om aangewezen paden te volgen of om op specifieke oppervlaktes te
manoeuvreren; hierbij coördineren ze hun eigen bewegingen opdat ze herhalende
en arbeidsintensieve taken kunnen volbrengen.

Dit proefschrift gaat over een specifieke klasse van vectorvelden, namelijk de
guiding vectorvelden. We bestuderen deze vectorvelden in een Euclidische ruimte
en een algemeen Riemannian manifold voor padvolging en bewegingscoördinatie
van een enkele robot alsook van een groep robots. Het guiding vectorveld bestaat
doorgaans uit twee delen, te weten een convergentie deel welke het mogelijk
maakt dat de integraalkrommen van de vectorveld convergeren naar het gewenste
pad en een propagatie deel welke raakt aan het gewenste pad opdat de verplaatsing
langs het gewenste pad wordt gewaarborgd. Het guiding vectorveld kan volledig
worden beschreven tot op de positieve coefficiënten) door tweemaal continu
differentieerbaar reële functies (genaamd niveaufuncties). De doorsnede van de
nul-niveauverzamelingen van deze niveaufuncties is het gewenste pad welke
wordt gevolgd. De theoretische analyse zit vol uitdagingen mede doordat de
guiding vectorvelden geen gradiënt zijn van een potentiaal functie alsmede door
de aanwezigheid van singuliere punten waar het vectorveld verdwijnt. We zullen
daarom in Deel I van dit proefschrift richten op het verkrijgen van uitgebreide
theoretische resultaten. In Deel II zullen we nader ingaan op het gebruik van
guiding vectorvelden in de praktische toepassingen.

In Deel I bestuderen we eerst de relatie tussen de waarden van de niveaufunc-
ties, de zogenaamde niveauwaarden, en de convergentie van de integraalkrom-
men van de vectorvelden naar het gewenste pad. De reden voor deze studie
is gebaseerd op het inzicht dat het gewenste pad de doorsnede is van de nul
niveauverzamelingen van de niveaufuncties. Het blijkt dat zelfs wanneer de
niveauwaarden langs een integraalkromme naar nul convergeert, dit niet impli-
ceert dat de desbetreffende integraalkromme convergeert naar het gewenste pad.
We geven enkele noodzakelijke aannames welke gebruikt worden door het hele
proefschrift om te garanderen dat de verdwijning van de niveauwaarden langs de
integraalkromme inderdaad leidt tot convergentie van de integraalkromme naar
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het gewenste pad. Deze aannames dragen bij in de navolgende analyse gezien
we alleen de convergentie van de niveauwaarden hoeven na te gaan.

Hierna bestuderen we autonome systemen waarbij het guiding vectorveld,
gedefinieerd in de n-dimensionele Euclidische ruimte Rn of een algemeen glad
Riemannian manifoldM, is te vinden aan de rechterhand. In het bijzonder tonen
we de exponentiële convergentie van de fout aan, in de buurt van het gewenste
pad, en de lokale input-to-state stabiliteit (ISS) van het systeem welke de fout be-
schrijft voor guiding vectorvelden die zich in een 3D Euclidische ruimte bevinden.
Deze resultaten kunnen eenvoudig worden toegepast voor guiding vectorvelden
in hoger-dimensionele Euclidische ruimtes. Daarnaast, rechtvaardigt de lokale
ISS eigenschap de effectiviteit van het regelontwerp welke gebruikt wordt voor
veel kinematische robot modelen, waaronder het eenwieler model. Dit principe
is ook gebruikt in dit proefschrift. We hebben hierna het guiding vectorveld
gegeneraliseerd van een Euclidische ruimte naar een algemeen glad Riemannian
manifold. Het gegeneraliseerde guiding vectorveld is cruciaal voor padvolging in
sommige abstracte ruimte configuraties. (bijvoorbeeld, robot arm joint ruimte).
We tonen aan dat het dichotome convergentie resultaat en de asymptotische
stabiliteit van de gewenste paden nog steeds van toepassing zijn. We vervolgen
de analyse met het speciale geval waarbij het gewenste pad homeomorf is tot de
eenheidscirkel S1 en bestuderen de guiding vectorvelden vanuit een topologische
invalshoek. We tonen aan dat de aanwezigheid van singuliere punten inherent
is aan de topologie van het gewenste pad in Euclidische ruimte. Met name in
Rn, waarbij n ≥ 3, bestaat er altijd een baan welke start aan de rand van elke bal
welke het gewenste pad bevat, maar toch niet convergeert naar het gewenste pad.
Bovendien, in het algemene n-dimensionele Riemannian manifold geval is het
domein van aantrekking van het gewenste pad homeomorphic tot Rn−1 × S1.

In Deel II ontwikkelen we variaties van de guiding vectorvelden en demon-
streren het gebruik hiervan in drie praktische toepassingen, namelijk padvolging
waarbij hindernissen worden vermeden, globale convergentie tot het gewenste
pad en bewegingscoördinatie van een groep robots. In de eerste toepassing
beschouwen we een praktische situatie waarbij het gewenste pad gedeeltelijk is
bezet door een aantal statische of bewegende hindernissen. We gebruiken een
gladde bump functie om twee guiding vectorvelden te combineren, eentje voor
padvolging en het andere voor het vermijden van botsingen. We tonen aan dat er
in veel gevallen singuliere punten bijkomen alhoewel het samengevoegde gui-
ding vectorveld voldoende glad is. Desalniettemin verstrekken we theoretische
voorwaarden en een switch mechanisme zodat het padvolgende en hindernis
vermijdende gedrag gegarandeerd effectief zijn. Deze aanpak is reactief en al-
gemeen, en daarom te gebruiken in real-time toepassingen en kan omgaan met
obstakels van willekeurige vormen. In de tweede toepassing, welke een gevolg is
van de topologische analyse en vooral de aanwezigheid van singuliere punten
van de guiding vectorvelden in Deel I, stellen we een innovatief idee voor om de
topologie van het gewenste pad te transformeren zodat de begrensde of zichzelf
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snijdende paden onbegrensd worden en zichzelf niet meer snijden (om precies te
zijn, (homeomorf) tot de reële lijn R). Deze aanpak leidt tot een singulier-vrije
hoger-dimensionele guiding vectorveld dat globale convergentie van de banen tot
de gewenste paden kunnen garanderen. De additionele dimensie correspondeert
met een virtuele coördinaat die de parameter van het gewenste pad weergeeft. In
de laatste toepassing benutten we de additionele dimensie van dit singulier-vrije
guiding vectorveld om de gedistribueerde bewegingscoördinatie en navigatie van
een groep robots van willekeurige grootte op verschillende gewenste paden of
oppervlaktes mogelijk te maken. Het resulterende algoritme is gedistribueerd,
schaalbaar en is goedkoop in communicatie en berekening. Al deze toepassingen
hebben formele garanties en worden ondersteund door uitgebreide simulatie
voorbeelden en experimenten met een fixed-wing vliegtuig.
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