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Introduction

Path following is one of the fundamental capabilities for mobile robots.

(a) wheeled robots (b) aerial robots (c) underwater robots
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Introduction

Path following is one of the fundamental capabilities for mobile robots.
But when there are many obstacles, collision avoidance is vital.

warehouse robots
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Introduction

How to realize both capabilities in a unified theoretical framework?
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Introduction

Path following algorithms using a vector field: most accurate, least
control effort (Sujit et al., 2014).

Vector field corresponding to the circle.
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Introduction

Steps:

• Design a vector field for path following, and another one for collision
avoidance.

• Combine two vector fields via bump functions.

• Obtaining the composite vector field χ : D ⊂ Rn → Rn, we analyze
the integral curves of it; i.e., the trajectories of ξ̇(t) = χ(ξ(t)).

We only consider the planar case now (i.e., n = 2).
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Problem Formulation

Desired path

P = {ξ ∈ R2 : φ(ξ) = 0},

where φ ∈ C 2 : R2 → R.

Obstacles, Reactive Boundary and Repulsive Boundary

Oall = {Oi ⊂ R2 : i ∈ I}

Ri = {ξ ∈ R2 : ϕi (ξ) = 0}

Qi = {ξ ∈ R2 : ϕi (ξ) = ci},

where I = {1, 2, . . . ,m}, ci 6= 0, ϕi ∈ C 2 : R2 → R.

It is assumed that Ri and Qi are compact.
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Problem Formulation

(a) Desired path P, reactive boundary R and repulsive
boundary Q

(b) Repulsive area Qin and non-
repulsive area Qex

(c) Reactive area Rin and non-
reactive area Rex

Assumption 1: For any ξ1, ξ2 ∈ R2, if |φ(ξ1)| ≤ |φ(ξ2)|, then
dist(ξ1,P) ≤ dist(ξ2,P). (absolute function value corresponds to distance)

Assumption 2: Oi ⊂ Qin
i ⊂ Rin

i and dist(Qi ,Ri ) > 0. (obstacle
enclosed by repulsive boundary, further enclosed by reactive boundary)

Assumption 3: P 6⊂
⋃

i∈I Rin
i . (obstacles not occupy whole desired path)

Assumption 4: For each i 6= j ∈ I, dist(Rin
i ,Rin

j ) > 0. (obstacles not
too close to each other)

4/16



Problem Formulation

Assumption 1: For any ξ1, ξ2 ∈ R2, if |φ(ξ1)| ≤ |φ(ξ2)|, then
dist(ξ1,P) ≤ dist(ξ2,P). (absolute function value corresponds to distance)

Assumption 2: Oi ⊂ Qin
i ⊂ Rin

i and dist(Qi ,Ri ) > 0. (obstacle
enclosed by repulsive boundary, further enclosed by reactive boundary)

Assumption 3: P 6⊂
⋃

i∈I Rin
i . (obstacles not occupy whole desired path)

Assumption 4: For each i 6= j ∈ I, dist(Rin
i ,Rin

j ) > 0. (obstacles not
too close to each other)

4/16



Problem Formulation

Assumption 1: For any ξ1, ξ2 ∈ R2, if |φ(ξ1)| ≤ |φ(ξ2)|, then
dist(ξ1,P) ≤ dist(ξ2,P). (absolute function value corresponds to distance)

Assumption 2: Oi ⊂ Qin
i ⊂ Rin

i and dist(Qi ,Ri ) > 0. (obstacle
enclosed by repulsive boundary, further enclosed by reactive boundary)

Assumption 3: P 6⊂
⋃

i∈I Rin
i . (obstacles not occupy whole desired path)

Assumption 4: For each i 6= j ∈ I, dist(Rin
i ,Rin

j ) > 0. (obstacles not
too close to each other)

4/16



Problem Formulation

Assumption 1: For any ξ1, ξ2 ∈ R2, if |φ(ξ1)| ≤ |φ(ξ2)|, then
dist(ξ1,P) ≤ dist(ξ2,P). (absolute function value corresponds to distance)

Assumption 2: Oi ⊂ Qin
i ⊂ Rin

i and dist(Qi ,Ri ) > 0. (obstacle
enclosed by repulsive boundary, further enclosed by reactive boundary)

Assumption 3: P 6⊂
⋃

i∈I Rin
i . (obstacles not occupy whole desired path)

Assumption 4: For each i 6= j ∈ I, dist(Rin
i ,Rin

j ) > 0. (obstacles not
too close to each other)

4/16



Problem Formulation

Assumption 1: For any ξ1, ξ2 ∈ R2, if |φ(ξ1)| ≤ |φ(ξ2)|, then
dist(ξ1,P) ≤ dist(ξ2,P). (absolute function value corresponds to distance)

Assumption 2: Oi ⊂ Qin
i ⊂ Rin

i and dist(Qi ,Ri ) > 0. (obstacle
enclosed by repulsive boundary, further enclosed by reactive boundary)

Assumption 3: P 6⊂
⋃

i∈I Rin
i . (obstacles not occupy whole desired path)

Assumption 4: For each i 6= j ∈ I, dist(Rin
i ,Rin

j ) > 0. (obstacles not
too close to each other)

4/16



Problem Formulation

Vector Field based integrated Collision Avoidance and Path Following (VF-CAPF)

Definition (VF-CAPF problem)
Design a continuously differentiable vector field χ : D ⊂ R2 → R2 for
ξ̇(t) = χ(ξ(t)) satisfying

1. (Path following). If Oall = ∅, the VF-PF problem is solved.

2. (Repulsive Qin). Trajectories do not enter closed repulsive area Qin.

3. (Bounded error). The path-following error dist(ξ(t),P) is bounded.
In non-reactive areas, the path-following error is strictly decreasing.

4. (Penetrable Rin
i ). Whenever a trajectory is in the closed reactive

area Rin
i , there exists a future (finite) time instant when it is not in

that area.
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Animation: Single Obstacle
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Composite VF Construction

The vector fields χP , χRi : R2 → R2 associated with P and Ri are:

χP(ξ) = E∇φ(ξ)− kpφ(ξ)∇φ(ξ), PF vector field

VF χ̂P for desired path P

VF χ̂R for reactive boundary R
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Composite VF Construction

The vector fields χP , χRi : R2 → R2 associated with P and Ri are:

χP(ξ) = E∇φ(ξ)− kpφ(ξ)∇φ(ξ), PF vector field

χRi (ξ) = E∇ϕi (ξ)− kriϕi (ξ)∇ϕi (ξ), Reactive vector field

The critical set CP and CRi are

CP = {ξ ∈ R2 : χP(ξ) = 0}, CRi = {ξ ∈ R2 : χRi (ξ) = 0},

It is assumed that dist(P, CP) > 0 and dist(Ri , CRi ) > 0.
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The critical set CP and CRi are

CP = {ξ ∈ R2 : χP(ξ) = 0}, CRi = {ξ ∈ R2 : χRi (ξ) = 0},

It is assumed that dist(P, CP) > 0 and dist(Ri , CRi ) > 0.

The integral curves of χP(ξ) either converge to P or CP .

Similarly, the integral curves of χRi (ξ) either converge to Ri or CRi .
(Kapitanyuk, et al., 2017)
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Composite VF Construction

Lemma 1 (bump functions)

For Ri and Qi , there exist smooth functions tQi ,uRi : R2 → [0,∞]:

tQi (ξ) =

{
0 ξ ∈ Qin

i

ai (ξ) ξ ∈ Qex
i ,

uRi (ξ) =

{
0 ξ ∈ Rex

i

bi (ξ) ξ ∈ Rin
i ,

where ai : Qex
i ⊂ R2 → (0,∞) and bi : Rin

i ⊂ R2 → (0,∞) are
bounded smooth functions.

2

00

0.5

-3 -2-2 -1 0 1 2 3

(a) zero-inside bump function tQi
(zero

values inside and including Qi )

0

0.5

2
3

20
1

0
-1-2 -2

-3

(b) zero-outside bump function uRi
(zero

values outside and including Ri )
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Composite VF Construction

Without loss of generality, consider only one obstacle.

χc(ξ) = tQ(ξ)χ̂P(ξ)

+ uR(ξ)χ̂Ri (ξ)

(a) VF χ̂P for desired path P (b) VF tQ(ξ)χ̂P (ξ)

(c) VF χ̂R for reactive boundary R (d) VF uR(ξ)χ̂R(ξ)

(e) Composite VF χc (ξ)
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Composite VF Construction

Do the two vector fields cancel each other in the annulus area?
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Main Results

The mixed areaM = Qex ∩Rin will be investigated. By Nagumo’s
theorem, the closed mixed areaM is not positively invariant (not
enough).

Remark 1
Note that if the condition is violated, it is possible that there are no
equilibria in the mixed areaM, and thus this limitation can be
removed.
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Main Results

Combining the previous results, the main theorem follows:

Theorem 1

The VF-CAPF problem is solved if the following conditions hold:

1. ξ(0) /∈ W(CP), W(CR) ∩Q = ∅, CP is bounded;

2. CP ∩Rin = ∅ and there is only one equilibrium c0 ∈ Cc in the mixed
areaM;

3. there exists a trajectory ξ(t) starting from the repulsive boundary Q
and reaching the reactive boundary R.
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Example: Multiple Obstacles

χc (ξ) =
∏
i∈I
tQi

(ξ)χ̂P (ξ) +
∑
i∈I
uRi

(ξ)χ̂Ri
(ξ),
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Conclusion and Future Work

Conclusion:

• we propose a composite vector field to integrate collision avoidance
and path following behaviors; theoretical guarantees are provided;

• we consider the simple situation: 2D, multiple static obstacles;

• we provide an abstract, high-level framework, while the
implementation aspects, such as, perception, motion, are neglected.

• the desired path and the contours of the obstacles are rather general;

• fundamental limitation is shown; but it could be removed in some
cases;
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Conclusion and Future Work

Future work

• moving obstacles;

• non-holonomic robot model; e.g, a unicycle model;

16/16



Appendix 0: Problem Formulation (rigorous version)

Definition (VF-CAPF problem)
1. (Path following). If Oall = ∅, the VF-PF problem is solved.

2. (Repulsive Qin). If ξ(0) /∈ Qin
i for all i ∈ I, then ξ(t) /∈ Qin

j for t ≥ 0 and all

j ∈ I. If there exits i ∈ I such that ξ(0) ∈ Qin
i , then there exists T > 0, such

that ξ(t) /∈ Qin
j for t ≥ T and all j ∈ I.

3. (Bounded path-following error). There exists a positive finite constant M such
that dist(ξ(t),P) ≤ M for t ≥ 0. Moreover, for all nonempty connected time
intervals Ξj ⊂ R, j ∈ N, such that ξ(t) /∈

⋃
i Rin

i for t ∈ Ξj , the path-following
error dist(ξ(t),P) is strictly decreasing on Ξj .

4. (Penetrable Rin
i ). Fixing i ∈ I, if for almost all trajectories, there exists te0 ∈ R

such that ξ(te0) ∈ Rin
i , then there exists t l0 > te0 such that ξ(t l0) /∈ Rin

i . In
addition, the trajectory cannot cross the reactive boundary Ri infinitely fast‡.

‡Suppose there exists a strictly increasing sequence of time instants (ti )
∞
i=1 such that a

trajectory is in the exit set (Conley, 1978) of the reactive boundary at these instants; precisely,
ξ(ti ) ∈ R− := {ξ0 ∈ R : ξ(0) = ξ0, ∀δ > 0, ξ([0, δ)) 6⊂ R}. If (ti )

∞
i=1 is a Cauchy sequence,

then the trajectory ξ(t) is said to cross R infinitely fast.



Appendix I: Nagumo’s theorem (Blanchini&Miani, 2008)

Definition 1 (Bouligand’s tangent cone)
Given a closed set S ⊂ Rn, the tangent cone to S at x ∈ Rn is defined
as follows:

TS(x) = {z ∈ Rn : lim inf
τ→0

dist(x + τz ,S)
τ

= 0}.

The tangent cone is nontrivial only on the boundary of S.

Theorem 1 (Nagumo’s theorem)
Consider the system ẋ(t) = f (x(t)) and assume that for each initial
condition x(0) in an open set O it admits a unique solution defined for
all t ≥ 0. Let S ⊂ O be a closed set. Then, S is positively invariant for
the system if and only if the velocity vector satisfies Nagumo’s
condition:

f (x) ∈ TS(x), for all x ∈ ∂S.
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Appendix II: Index theorem (Khalil, 1996)

Consider the second-order autonomous system ẋ = f (x), where f (x) ∈ C 1.

Poincaré index: Let C be a simple closed curve not passing through any
equilibrium point. Consider the orientation of the vector field f (x) at a point
p ∈ C . Letting p traverse C in the counterclockwise direction, the vector f (x)

rotates continuously and, upon returning to the original position, must have
rotated an angle 2kπ for some integer k, where the angle is measured
counterclockwise.

The integer is called the index of the closed curve C . If C is chosen to encircle
a single isolated equilibrium point x̄ , then k is called the index of x̄ .



Appendix II

Theorem 2 (Index theorem)

1. The index of a node, a focus, or a center is +1.

2. The index of a (hyperbolic) saddle is −1.
3. The index of a closed orbit is +1.

4. The index of a closed curve not encircling any equilibrium
point is 0.

5. The index of a closed curve is equal to the sum of the indices of the
equilibrium points within it.



Appendix III: An example of no equilibria

Figure 4: In this case, CP ∩Rin 6= ∅. There are no equilibrium points in the
mixed area M.



Appendix IV: Bump functions

The reactive boundary is described by a rotated ellipse in general:

ϕ(x , y) =
((x − ox ) cosβ + (y − oy ) sinβ)2

a2 +
((x − ox ) sinβ − (y − oy ) cosβ)2

b2 −1 = 0

We choose the zero-inside bump function as

tQ(ξ) =


0 ξ ∈ {ϕ(ξ) ≤ c}

exp

(
l1

c − ϕ(ξ)

)
ξ ∈ {ϕ(ξ) > c}

(1)

and the zero-outside bump function as

uR(ξ) =

exp

(
l2
ϕ(ξ)

)
ξ ∈ {ϕ(ξ) < 0}

0 ξ ∈ {ϕ(ξ) ≥ 0},
(2)

where l1 > 0, l2 > 0 are used to change the decaying or increasing rate of
the bump functions.
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