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Introduction

The path following problem deals with finding a control law for a mobile
vehicle to converge to and move along a desired geometric path.

Path following is a basic function for many mobile robots, and related
new applications have emerged, e.g., to probe atmospheric phenomena by
drones1.

(a) wheeled robots (b) aerial robots (c) underwater robots

1Lacroix, et al., 2016, “Fleets of enduring drones to probe atmospheric phenomena with clouds”
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Introduction

Among many path following algorithms, we focus on those using a
guiding vector field.

Vector Field Guided Path Following
A vector field is designed such that the corresponding integral curves
converge to the desired path. It acts as guidance.
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Take a 2D normalized vector field as an example (Kapitanyuk et al., 2017).
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φ(x , y) = x2 + y2 − R2 = 0

Advantages:
1. Mild restrictions on initial conditions;
2. Intuitive, practical;
3. Most accurate, least control effort
among several algorithms (Sujit et al.,

2014).

3/21



Introduction

Among many path following algorithms, we focus on those using a
guiding vector field.

Vector Field Guided Path Following
A vector field is designed such that the corresponding integral curves
converge to the desired path. It acts as guidance.

Take a 2D normalized vector field as an example (Kapitanyuk et al., 2017).

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

φ(x , y) = x2 + y2 − R2 = 0

Advantages:
1. Mild restrictions on initial conditions;
2. Intuitive, practical;
3. Most accurate, least control effort
among several algorithms (Sujit et al.,

2014).

3/21



Introduction

Among many path following algorithms, we focus on those using a
guiding vector field.

Vector Field Guided Path Following
A vector field is designed such that the corresponding integral curves
converge to the desired path. It acts as guidance.

Take a 2D normalized vector field as an example (Kapitanyuk et al., 2017).

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

φ(x , y) = x2 + y2 − R2 = 0

Challenges:
1. Singular points;

3/21



Introduction

Among many path following algorithms, we focus on those using a
guiding vector field.

Vector Field Guided Path Following
A vector field is designed such that the corresponding integral curves
converge to the desired path. It acts as guidance.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Challenges:
1. Singular points;
2. Self-intersected desired paths;

3/21



Introduction

How to eliminate singular points if possible?
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Introduction

How to eliminate singular points if possible?
How to deal with self-intersected desired paths?

How to guarantee global convergence to the desired path?
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High-dimensional Guiding Vector Field

Desired path P ⊆ Rn

P = {ξ ∈ Rn : φi (ξ) = 0, i = 1, . . . , n − 1},

where φi ∈ C 2 : Rn → R.

The value φi (ξ) is called the path-following error. The desired path
is a one-dimensional connected C 2 manifold.

Vector field χ : Rn → Rn

χ = ×(∇φ1, . . . ,∇φn−1)︸ ︷︷ ︸
propagation term

+
n−1∑
i=1

−kiφi∇φi︸ ︷︷ ︸
converging term

,
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High-dimensional Guiding Vector Field

Remark 1 (Categories of Desired Paths)
Desired paths can generally be classified into those homeomorphic
to the unit circle S1 if they are compact, and those homeomorphic
the real line R otherwise.

Notions interchangeably used throughout the talk:

simple closed ⇐⇒ homeomorphic to S1

unbounded ⇐⇒ homeomorphic to R

Note that self-intersected desired paths do not fall into either of
the category, but can be transformed into unbounded and
non-self-intersected desired paths introduced later.
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High-dimensional Guiding Vector Field

Remark 2 (Dimensions of Desired Paths)
Topologically, the desired path P itself is one-dimensional,
independent of the dimensions of the Euclidean space where it
lives.

However, we call the desired path P n-D (or nD) if it lives in the
n-dimensional Euclidean space Rn and not in any
lower-dimensional subspace W ⊆ Rn (i.e., the smallest subspace
the desired path lives in).
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Issues on the Global Convergence
to Desired Paths



General Convergence Results

We investigate the convergence property of the integral curves of
the vector field χ; that is, the solutions to the following
autonomous ODE:

ξ̇(t) = χ(ξ(t)).

Lemma 1

Under some assumptions2, the integral curves of the guiding
vector field χ : Rn → Rn converge either to the desired path
P ⊆ Rn, or to the singular set C ⊆ Rn.

2Yao, Kapitanyuk, Cao, 2018, CDC
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Topological Obstruction

Theorem 1 (Crossing Points are Singular Points)

A crossing point of a self-intersected desired path is also a
singular point of the guiding vector field.

Theorem 2 (Impossibility of global convergence)

If a desired path is simple closed, then it is not possible to
guarantee the global convergence to the desired path.
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Topological Obstruction

Remark 3
Root causes:

• The topology of the desired path;

• The time-invariance property of the vector field.
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Topological Obstruction

How to remove the obstruction?

• We construct unbounded and non-self-intersected desired
paths from the originally simple closed or self-intersected
desired paths by “cutting” and “stretching”.

• Based on the new desired paths, we can derive a
higher-dimensional vector field of which the singular set is
empty.

• To go back to the original desired path, we “project” it onto
the original lower-dimensional space.
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Higher-dimensional
Singularity-free Vector Field
Construction



Singularity-free vector field

Suppose the 2D desired path Pphy is parameterized by

x1 = f1(w), x2 = f2(w),

Then we can simply let

φ1(ξ) = x1 − f1(w), φ2(ξ) = x2 − f2(w),

So the higher-dimensional desired path is

Phgh = {ξ = (x1, x2,w) ∈ R2+1 : φi (ξ) = 0, i = 1, 2}.

Intuitively, the higher-dimensional desired path P is obtained by
“cutting” and “stretching” the 2D desired path Pphy along the
virtual w -axis.
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Singularity-free vector field

Are there singular points in the new higher-dimensional vector
field χ : R2+1 → R2+1?
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Singularity-free vector field

The propagation term:

∇φ1 ×∇φ2 =

f ′1(w)

f ′2(w)

1

 .
No singular points; that is, Chgh = ∅.
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Singularity-free vector field

We use the linear transformation operator Pa = I − aa> =
[
I2 0
0 0

]
,

where a = (0, 0, 1)>. The effect is to “zero” the last entry of a
vector.

Then we have:

π(1,...,n)(Ptrs) = Pphy, where Ptrs = Pa(Phgh).
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Singularity-free vector field

Theorem 3

Given a 2D parameterized physical desired path Pphy ⊆ R2. Let
φ1, φ2 be chosen as before. Then there are no singular points in
the corresponding (2+ 1)-dimensional vector field
χhgh : R2+1 → R2+1. Let a = (0, 0, 1)> for the linear
transformation operator Pa. Then the projected transformed
trajectory

ξprj(t) = (x1(t), x2(t))
>

globally asymptotically converges to the physical desired path
Pphy as t →∞.
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Singularity-free vector field

Figure 1: Three layers of the 3D vector field corresponding to a circle.
The solid line is the 2D desired path while the dashed line is the
corresponding 3D (unbounded) desired path. Three layers of the 3D
vector field evaluated at w = 0, 0.6, 1.4 respectively are illustrated.
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Simulations



Simulations

Red point:
(
f1(w), f2(w)

)

Actual aircraft movement Virtual aircraft movement (due to the

virtual w -axis)
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Conclusions

• Transform simple closed or self-intersected to unbounded and
non-self-intersected virtual desired paths in a
higher-dimensional space;

• Then create a high-dimensional singularity-free vector field;

• Global convergence to the desired paths, which can be even
self-intersected, is guaranteed.

• Extensions to n-dimensional, some other appealing features of
the vector field and implementation details on a fixed-wing
UAV can be found in3

3W. Yao, H. G. de Marina, B. Lin, and M. Cao, “Singularity-free guiding vector field for robot

navigation,” IEEE Transactions on Robotics, 2020, accepted for publication.
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Thank you!
Feel free to contact me (Weijia Yao) via

w.yao@rug.nl.

Title: Vector Field Guided Path Following Control: Singularity
Elimination and Global Convergence
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