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Introduction

The path following problem deals with finding a control law for a mobile
vehicle to converge to and move along a desired geometric path.

Path following is a basic function for many mobile robots, and related
new applications have emerged, e.g., to probe atmospheric phenomena by
drones?.

(a) wheeled robots (b) aerial robots (¢) underwater robots

1Lacroix, et al., 2016, “Fleets of enduring drones to probe atmospheric phenomena with clouds”
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Introduction

Among many path following algorithms, we focus on those using a
guiding vector field.

Vector Field Guided Path Following

A vector field is designed such that the corresponding integral curves
converge to the desired path. It acts as guidance.
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Introduction

Among many path following algorithms, we focus on those using a
guiding vector field.

Vector Field Guided Path Following

A vector field is designed such that the corresponding integral curves
converge to the desired path. It acts as guidance.

Take a 2D normalized vector field as an example (Kapitanyuk et al., 2017).

Advantages:

1. Mild restrictions on initial conditions;
2. Intuitive, practical;

3. Most accurate, least control effort
among several algorithms (Sujit et al.,
2014).
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Introduction

How to eliminate singular points if possible?
How to deal with self-intersected desired paths?
How to guarantee global convergence to the desired path?
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High-dimensional Guiding Vector Field

Desired path P C R"
P={£e€R":¢i(§)=0,i=1,...,n—1},

where ¢; € C2: R" — R.

The value ¢;(€) is called the path-following error. The desired path
is a one-dimensional connected C? manifold.

6/21



High-dimensional Guiding Vector Field

Desired path P C R"

P={£e€R":¢i(§)=0,i=1,...,n—1},
where ¢; € C2: R" — R.

The value ¢;(€) is called the path-following error. The desired path
is a one-dimensional connected C2 manifold.
Vector field X : R" — R”

n—1

X=x(Vo1,...,Voo_1)+ Z —ki9iVoi,

i=1

propagation term

converging term
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High-dimensional Guiding Vector Field

Remark 1 (Categories of Desired Paths)

Desired paths can generally be classified into those homeomorphic
to the unit circle St if they are compact, and those homeomorphic
the real line R otherwise.

Notions interchangeably used throughout the talk:

simple closed <= homeomorphic to S!
unbounded <= homeomorphic to R
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High-dimensional Guiding Vector Field

Remark 1 (Categories of Desired Paths)

Desired paths can generally be classified into those homeomorphic
to the unit circle St if they are compact, and those homeomorphic
the real line R otherwise.

Notions interchangeably used throughout the talk:

simple closed <= homeomorphic to S!
unbounded <= homeomorphic to R

Note that self-intersected desired paths do not fall into either of

the category, but can be transformed into unbounded and
non-self-intersected desired paths introduced later.
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High-dimensional Guiding Vector Field

Remark 2 (Dimensions of Desired Paths)

Topologically, the desired path P itself is one-dimensional,
independent of the dimensions of the Euclidean space where it
lives.
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High-dimensional Guiding Vector Field

Remark 2 (Dimensions of Desired Paths)

Topologically, the desired path P itself is one-dimensional,
independent of the dimensions of the Euclidean space where it
lives.

However, we call the desired path P n-D (or nD) if it lives in the
n-dimensional Euclidean space R" and not in any
lower-dimensional subspace W C R" (i.e., the smallest subspace
the desired path lives in).
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Issues on the Global Convergence
to Desired Paths




General Convergence Results

We investigate the convergence property of the integral curves of
the vector field X; that is, the solutions to the following
autonomous ODE:

Lemma 1

Under some assumptions®, the integral curves of the guiding
vector field X : R" — R" converge either to the desired path
P C R", or to the singular set C C R".

2Yao, Kapitanyuk, Cao, 2018, CDC
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Topological Obstruction

Theorem 1 (Crossing Points are Singular Points)

A crossing point of a self-intersected desired path is also a
singular point of the guiding vector field.

Theorem 2 (Impossibility of global convergence)

If a desired path is simple closed, then it is not possible to
guarantee the global convergence to the desired path.
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Topological Obstruction

Remark 3

Root causes:

e The topology of the desired path;

e The time-invariance property of the vector field.
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e We construct unbounded and non-self-intersected desired
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Topological Obstruction

How to remove the obstruction?

e We construct unbounded and non-self-intersected desired
paths from the originally simple closed or self-intersected
desired paths by “cutting” and “stretching”.

e Based on the new desired paths, we can derive a
higher-dimensional vector field of which the singular set is
empty.

e To go back to the original desired path, we “project” it onto
the original lower-dimensional space.
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Higher-dimensional
Singularity-free Vector Field
Construction




Singularity-free vector field

Suppose the 2D desired path PPY is parameterized by

x1 = fi(w), xo = h(w),
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Singularity-free vector field

Suppose the 2D desired path PPY is parameterized by
X1 = ﬁ.(W),X2 — f2(W)7
Then we can simply let

$1(€) = x1 — fi(w), p2(§) = x2 — fo(w),
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Singularity-free vector field

Suppose the 2D desired path PPY is parameterized by
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Singularity-free vector field

Suppose the 2D desired path PPY is parameterized by
x; = fi(w), x2 = H(w),
Then we can simply let
$1(§) = x1 — fi(w), 2(§) = x2 — fo(w),

So the higher-dimensional desired path is
Pheh = L& = (xq, 30, w) € R?T1: ¢;(€) =0, i =1,2}. )

Intuitively, the higher-dimensional desired path P is obtained by
“cutting” and “stretching” the 2D desired path PPY along the

virtual w-axis.
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Singularity-free vector field

12

10
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Singularity-free vector field
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Are there singular points in the new higher-dimensional vector
field X : R*T! — R217
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Singularity-free vector field

The propagation term:

()
Vo1 x Vo = | f(w)
1
No singular points; that is, CPeh = (. J
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Singularity-free vector field

We use the linear transformation operator P, = | —aa' = [IS 8]'
where a = (0,0,1)". The effect is to “zero” the last entry of a
vector.

Then we have:

77(1,..A,n)(73t“) = PP where P = P,(Pheh). J
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Singularity-free vector field

Theorem 3

Given a 2D parameterized physical desired path PP C R2. Let
@1, ¢ be chosen as before. Then there are no singular points in
the corresponding (2 + 1)-dimensional vector field

xheh . R2+1 5 R2+1 [ et 2 =(0,0,1)" for the linear
transformation operator P,. Then the projected transformed
trajectory

€P9(t) = (xa(t), (1)

globally asymptotically converges to the physical desired path
PPY a5 t — oco.
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Singularity-free vector field
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=

Figure 1: Three layers of the 3D vector field corresponding to a circle.
The solid line is the 2D desired path while the dashed line is the
corresponding 3D (unbounded) desired path. Three layers of the 3D
vector field evaluated at w = 0, 0.6, 1.4 respectively are illustrated.
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Simulations




Simulations

Red point: (f(w), fa(w))

Actual aircraft movement Virtual aircraft movement (due to the

virtual w-axis)
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Conclusions

e Transform simple closed or self-intersected to unbounded and
non-self-intersected virtual desired paths in a
higher-dimensional space;

e Then create a high-dimensional singularity-free vector field;

e Global convergence to the desired paths, which can be even
self-intersected, is guaranteed.

e Extensions to n-dimensional, some other appealing features of
the vector field and implementation details on a fixed-wing
UAV can be found in3

3W. Yao, H. G. de Marina, B. Lin, and M. Cao, “Singularity-free guiding vector field for robot

navigation,” |IEEE Transactions on Robotics, 2020, accepted for publication.
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Thank youl

Feel free to contact me (Weijia Yao) via
w.yaoQrug.nl.

Title: Vector Field Guided Path Following Control: Singularity
Elimination and Global Convergence

Authors: Weijia Yao, Hector Gacia de Marina, Ming Cao
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