Vector Field Guided Path Following Control: Singularity Elimination and Global Convergence

Weijia Yao ${ }^{1}$, Hector Garcia de Marina ${ }^{2}$, Ming Cao ${ }^{1}$
IEEE-CDC, December, 2020
1 University of Groningen, the Netherlands
2 Universidad Complutense de Madrid, Spain

Introduction

The path following problem deals with finding a control law for a mobile vehicle to converge to and move along a desired geometric path.

Path following is a basic function for many mobile robots, and related new applications have emerged, e.g., to probe atmospheric phenomena by drones ${ }^{1}$.

(a) wheeled robots

(b) aerial robots

(c) underwater robots

[^0]
Introduction

Among many path following algorithms, we focus on those using a guiding vector field.

Vector Field Guided Path Following

A vector field is designed such that the corresponding integral curves converge to the desired path. It acts as guidance.

Introduction

Among many path following algorithms, we focus on those using a guiding vector field.

Vector Field Guided Path Following

A vector field is designed such that the corresponding integral curves converge to the desired path. It acts as guidance.
Take a 2D normalized vector field as an example (Kapitanyuk et al., 2017).

$$
\phi(x, y)=x^{2}+y^{2}-R^{2}=0
$$

Introduction

Among many path following algorithms, we focus on those using a guiding vector field.

Vector Field Guided Path Following

A vector field is designed such that the corresponding integral curves converge to the desired path. It acts as guidance.
Take a 2D normalized vector field as an example (Kapitanyuk et al., 2017).

Advantages:

1. Mild restrictions on initial conditions;
2. Intuitive, practical;
3. Most accurate, least control effort among several algorithms (Sujit et al., 2014).

$$
\phi(x, y)=x^{2}+y^{2}-R^{2}=0
$$

Introduction

Among many path following algorithms, we focus on those using a guiding vector field.

Vector Field Guided Path Following

A vector field is designed such that the corresponding integral curves converge to the desired path. It acts as guidance.
Take a 2D normalized vector field as an example (Kapitanyuk et al., 2017).

$$
\phi(x, y)=x^{2}+y^{2}-R^{2}=0
$$

Challenges:

1. Singular points;

Introduction

Among many path following algorithms, we focus on those using a guiding vector field.

Vector Field Guided Path Following

A vector field is designed such that the corresponding integral curves converge to the desired path. It acts as guidance.

Challenges:

1. Singular points;
2. Self-intersected desired paths;

Introduction

How to eliminate singular points if possible?

Introduction

How to eliminate singular points if possible? How to deal with self-intersected desired paths?

Introduction

How to eliminate singular points if possible? How to deal with self-intersected desired paths?
How to guarantee global convergence to the desired path?

Table of Contents

1. Preliminaries
2. Issues on the Global Convergence to Desired Paths
3. Higher-dimensional Singularity-free Vector Field Construction
4. Simulations
5. Conclusions

Preliminaries

High-dimensional Guiding Vector Field

Desired path $\mathcal{P} \subseteq \mathbb{R}^{n}$

$$
\mathcal{P}=\left\{\xi \in \mathbb{R}^{n}: \phi_{i}(\xi)=0, i=1, \ldots, n-1\right\},
$$

where $\phi_{i} \in C^{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
The value $\phi_{i}(\xi)$ is called the path-following error. The desired path is a one-dimensional connected C^{2} manifold.

High-dimensional Guiding Vector Field

Desired path $\mathcal{P} \subseteq \mathbb{R}^{n}$

$$
\mathcal{P}=\left\{\xi \in \mathbb{R}^{n}: \phi_{i}(\xi)=0, i=1, \ldots, n-1\right\},
$$

where $\phi_{i} \in C^{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
The value $\phi_{i}(\xi)$ is called the path-following error. The desired path is a one-dimensional connected C^{2} manifold.
Vector field $\chi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

$$
\chi=\underbrace{\times\left(\nabla \phi_{1}, \ldots, \nabla \phi_{n-1}\right)}_{\text {propagation term }}+\underbrace{\sum_{i=1}^{n-1}-k_{i} \phi_{i} \nabla \phi_{i}}_{\text {converging term }},
$$

High-dimensional Guiding Vector Field

Remark 1 (Categories of Desired Paths)

Desired paths can generally be classified into those homeomorphic to the unit circle \mathbb{S}^{1} if they are compact, and those homeomorphic the real line \mathbb{R} otherwise.

Notions interchangeably used throughout the talk:

$$
\begin{aligned}
\text { simple closed } & \Longleftrightarrow \text { homeomorphic to } \mathbb{S}^{1} \\
\text { unbounded } & \Longleftrightarrow \text { homeomorphic to } \mathbb{R}
\end{aligned}
$$

High-dimensional Guiding Vector Field

Remark 1 (Categories of Desired Paths)

Desired paths can generally be classified into those homeomorphic to the unit circle \mathbb{S}^{1} if they are compact, and those homeomorphic the real line \mathbb{R} otherwise.

Notions interchangeably used throughout the talk:

$$
\begin{aligned}
\text { simple closed } & \Longleftrightarrow \text { homeomorphic to } \mathbb{S}^{1} \\
\text { unbounded } & \Longleftrightarrow \text { homeomorphic to } \mathbb{R}
\end{aligned}
$$

Note that self-intersected desired paths do not fall into either of the category, but can be transformed into unbounded and non-self-intersected desired paths introduced later.

High-dimensional Guiding Vector Field

Remark 2 (Dimensions of Desired Paths)

Topologically, the desired path \mathcal{P} itself is one-dimensional, independent of the dimensions of the Euclidean space where it lives.

High-dimensional Guiding Vector Field

Remark 2 (Dimensions of Desired Paths)

Topologically, the desired path \mathcal{P} itself is one-dimensional, independent of the dimensions of the Euclidean space where it lives.

However, we call the desired path $\mathcal{P} n-D$ (or $n D$) if it lives in the n-dimensional Euclidean space \mathbb{R}^{n} and not in any lower-dimensional subspace $\mathcal{W} \subseteq \mathbb{R}^{n}$ (i.e., the smallest subspace the desired path lives in).

Issues on the Global Convergence to Desired Paths

General Convergence Results

We investigate the convergence property of the integral curves of the vector field χ; that is, the solutions to the following autonomous ODE:

$$
\dot{\xi}(t)=\chi(\xi(t)) .
$$

Lemma 1

Under some assumptions ${ }^{2}$, the integral curves of the guiding vector field $\chi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ converge either to the desired path $\mathcal{P} \subseteq \mathbb{R}^{n}$, or to the singular set $\mathcal{C} \subseteq \mathbb{R}^{n}$.

[^1]
Topological Obstruction

Theorem 1 (Crossing Points are Singular Points)
A crossing point of a self-intersected desired path is also a singular point of the guiding vector field.

Theorem 2 (Impossibility of global convergence)
If a desired path is simple closed, then it is not possible to guarantee the global convergence to the desired path.

Topological Obstruction

Remark 3

Root causes:

- The topology of the desired path;
- The time-invariance property of the vector field.

Topological Obstruction

Remark 3

Root causes:

- The topology of the desired path;
- The time-invariance property of the vector field.

How to remove the obstruction?

Topological Obstruction

Remark 3

Root causes:

- The topology of the desired path;
- The time-invariance property of the vector field.

How to remove the obstruction?

Topological Obstruction

How to remove the obstruction?

- We construct unbounded and non-self-intersected desired paths from the originally simple closed or self-intersected desired paths by "cutting" and "stretching".

Topological Obstruction

How to remove the obstruction?

- We construct unbounded and non-self-intersected desired paths from the originally simple closed or self-intersected desired paths by "cutting" and "stretching".
- Based on the new desired paths, we can derive a higher-dimensional vector field of which the singular set is empty.

Topological Obstruction

How to remove the obstruction?

- We construct unbounded and non-self-intersected desired paths from the originally simple closed or self-intersected desired paths by "cutting" and "stretching".
- Based on the new desired paths, we can derive a higher-dimensional vector field of which the singular set is empty.
- To go back to the original desired path, we "project" it onto the original lower-dimensional space.

Higher-dimensional
Singularity-free Vector Field
Construction

Singularity-free vector field

Suppose the 2D desired path $\mathcal{P}^{\text {phy }}$ is parameterized by

$$
x_{1}=f_{1}(w), x_{2}=f_{2}(w)
$$

Singularity-free vector field

Suppose the 2D desired path $\mathcal{P}^{\text {phy }}$ is parameterized by

$$
x_{1}=f_{1}(w), x_{2}=f_{2}(w)
$$

Then we can simply let

$$
\phi_{1}(\xi)=x_{1}-f_{1}(w), \phi_{2}(\xi)=x_{2}-f_{2}(w)
$$

Singularity-free vector field

Suppose the 2D desired path $\mathcal{P}^{\text {phy }}$ is parameterized by

$$
x_{1}=f_{1}(w), x_{2}=f_{2}(w)
$$

Then we can simply let

$$
\phi_{1}(\xi)=x_{1}-f_{1}(w), \phi_{2}(\xi)=x_{2}-f_{2}(w)
$$

So the higher-dimensional desired path is
$\mathcal{P}^{\mathrm{hgh}}=\left\{\xi=\left(x_{1}, x_{2}, w\right) \in \mathbb{R}^{2+1}: \phi_{i}(\xi)=0, i=1,2\right\}$.

Singularity-free vector field

Suppose the 2D desired path $\mathcal{P}^{\text {phy }}$ is parameterized by

$$
x_{1}=f_{1}(w), x_{2}=f_{2}(w)
$$

Then we can simply let

$$
\phi_{1}(\xi)=x_{1}-f_{1}(w), \phi_{2}(\xi)=x_{2}-f_{2}(w)
$$

So the higher-dimensional desired path is
$\mathcal{P}^{\mathrm{hgh}}=\left\{\xi=\left(x_{1}, x_{2}, w\right) \in \mathbb{R}^{2+1}: \phi_{i}(\xi)=0, i=1,2\right\}$.
Intuitively, the higher-dimensional desired path \mathcal{P} is obtained by "cutting" and "stretching" the 2D desired path $\mathcal{P}^{\text {phy }}$ along the virtual w-axis.

Singularity-free vector field

Singularity-free vector field

Are there singular points in the new higher-dimensional vector field $\chi: \mathbb{R}^{2+1} \rightarrow \mathbb{R}^{2+1}$?

Singularity-free vector field

The propagation term:

$$
\nabla \phi_{1} \times \nabla \phi_{2}=\left[\begin{array}{c}
f_{1}^{\prime}(w) \\
f_{2}^{\prime}(w) \\
1
\end{array}\right]
$$

No singular points; that is, $\mathcal{C}^{\text {hgh }}=\emptyset$.

Singularity-free vector field

We use the linear transformation operator $P_{a}=I-a a^{\top}=\left[\begin{array}{cc}1_{2} & 0 \\ 0 & 0\end{array}\right]$, where $a=(0,0,1)^{\top}$. The effect is to "zero" the last entry of a vector.

Then we have:
$\pi_{(1, \ldots, n)}\left(\mathcal{P}^{\text {trs }}\right)=\mathcal{P}^{\text {phy }}$, where $\mathcal{P}^{\text {trs }}=P_{a}\left(\mathcal{P}^{\text {hgh }}\right)$.

Singularity-free vector field

Theorem 3

Given a 2D parameterized physical desired path $\mathcal{P}^{\text {phy }} \subseteq \mathbb{R}^{2}$. Let ϕ_{1}, ϕ_{2} be chosen as before. Then there are no singular points in the corresponding $(2+1)$-dimensional vector field $\chi^{\mathrm{hgh}}: \mathbb{R}^{2+1} \rightarrow \mathbb{R}^{2+1}$. Let $a=(0,0,1)^{\top}$ for the linear transformation operator P_{a}. Then the projected transformed trajectory

$$
\xi^{\mathrm{prj}}(t)=\left(x_{1}(t), x_{2}(t)\right)^{\top}
$$

globally asymptotically converges to the physical desired path $\mathcal{P}^{\text {phy }}$ as $t \rightarrow \infty$.

Singularity-free vector field

Figure 1: Three layers of the 3D vector field corresponding to a circle. The solid line is the 2D desired path while the dashed line is the corresponding 3D (unbounded) desired path. Three layers of the 3D vector field evaluated at $w=0,0.6,1.4$ respectively are illustrated.

Simulations

Simulations

Red point: $\left(f_{1}(w), f_{2}(w)\right)$

Actual aircraft movement

Virtual aircraft movement (due to the virtual w-axis)

Conclusions

Conclusions

- Transform simple closed or self-intersected to unbounded and non-self-intersected virtual desired paths in a higher-dimensional space;
- Then create a high-dimensional singularity-free vector field;
- Global convergence to the desired paths, which can be even self-intersected, is guaranteed.
- Extensions to n-dimensional, some other appealing features of the vector field and implementation details on a fixed-wing UAV can be found in ${ }^{3}$

[^2]
Thank you!

Feel free to contact me (Weijia Yao) via w. yao@rug.nl.

Title: Vector Field Guided Path Following Control: Singularity Elimination and Global Convergence
Authors: Weijia Yao, Hector Gacia de Marina, Ming Cao

[^0]: ${ }^{1}$ Lacroix, et al., 2016, "Fleets of enduring drones to probe atmospheric phenomena with clouds"

[^1]: ${ }^{2}$ Yao, Kapitanyuk, Cao, 2018, CDC

[^2]: ${ }^{3}$ W. Yao, H. G. de Marina, B. Lin, and M. Cao, "Singularity-free guiding vector field for robot navigation," IEEE Transactions on Robotics, 2020, accepted for publication.

