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Introduction

The convergence of trajectories of a dynamical system to a closed
invariant set is important in many control problems1.

The closed invariant set is described by the zero-level set of a continuous
non-negative function f . For convenience, f is referred to as the level
function and its value at a point is called the point’s level value.

One natural idea: use the level value along a trajectory to characterize
the convergence to the zero-level set. But does this always work?

1Kapitanyuk, et al., 2018; Yao, et al., 2020; Wang, et al., 2019; Qin, et al., 2018.
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Introduction

Another related question is: Does convergence to a closed invariant set
imply convergence to a point in this set?

The answer is obvious: No. Then when will this implication hold?

For gradient flows, this problem has been well studied2, but it is not
completely clear for non-gradient flows.

We focus on one special kind of non-gradient flow given by a guiding
vector field for path following.

2Absil, et al., SIOPT, 2005; Absil & Kurdyka, SCL, 2006.
4/22
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Problem Formulation

Our work is motivated by the vector field guided path-following problem3,

Desired path

P = {ξ ∈ Rn : φi (ξ) = 0, i = 1, . . . , n − 1},

where φi ∈ C 2 : Rn → R.

Let f = ‖(φ1, . . . , φn−1)‖, then P = f −1(0).

f is called the level function; for any point ξ ∈ Rn, the value f (ξ) is
called the level value.

Since f (ξ) = 0 ⇐⇒
(
φ1(ξ), . . . , φn−1(ξ)

)
= 0 ⇐⇒ ξ ∈ P, one may

use f (ξ) to quantify the distance from a point ξ to the desired path P.
The following question arises naturally:

3Lawrence, et al., JGCD, 2008; Nelson, et al., T-RO, 2007; Goncalves, et al., T-RO,
2010; Kapitanyuk, et al., T-CST, 2018.
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Problem Formulation

Question 1 (Q1)
If f (ξ(t)) = ‖(φ1(ξ(t)), . . . , φn−1(ξ(t)))‖ → 0 as t →∞ along a
continuous trajectory ξ(t) defined on [0,∞), is it true that the
trajectory ξ(t) will converge to the set P = f −1(0)?

Remark 1
Q1 does not depend on the path-following setting, but is relevant to any
problem where the desired set is the zero-level set of a level function,
and the convergence to the set is a requirement of the problem.

However, the second question Q2 to consider is closely related to the
vector field guided path-following problem, as discussed below.
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Problem Formulation

The guiding vector field χ : R2 → R2 for path following in R2 is:

χ(ξ) = Rot(90◦)∇φ(ξ)︸ ︷︷ ︸
tangential/traversal

− kφ(ξ)∇φ(ξ)︸ ︷︷ ︸
orthogonal/converging

, (1)

The guiding vector field χ : Rn → Rn in Rn for n ≥ 3 is

χ(ξ) = ⊥φ(ξ)︸ ︷︷ ︸
tangential/traversal

−
n−1∑
i=1

kiφi (ξ)∇φi (ξ)︸ ︷︷ ︸
orthogonal/converging

(2)

where ⊥φ is the wedge product of all the gradient vectors ∇φi and
ki > 0 are constants for i = 1, . . . , n − 1.

Let
e(ξ) =

(
φ1(ξ), . . . , φn−1(ξ)

)
∈ Rn−1. (3)

Hence, the level function f = ‖e‖.
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Problem Formulation

The integral curves of the guiding vector field (i.e., the trajectories of
ξ̇(t) = χ(ξ(t))) converge to the desired path under some conditions.

Trajectories may also converge to the singular set C:

C = {ξ ∈ Rn : χ(ξ) = 0},

whose elements are called singular points.

Under some mild assumptions, P is an asymptotically stable limit cycle,
and trajectories “spiral” and converge to the desired path but do not
converge to any single point on the desired path.

So how about the convergence to the singular set C?
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Problem Formulation

Question 2 (Q2)
When the trajectories converge to the singular set, will they converge to
a singular point, or “spiral” towards the singular set and not converge to
any single point of it?
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Answer to Q1: Two convergence notions

Definition 1 (Metrical and topological convergence)

Consider a metric space (M, d) and the topology induced by the metric
d . Suppose A 6= ∅ is closed inM, and let (ξi )

∞
i=0 ∈M be an infinite

sequence of points. The sequence converges to A metrically if for any
ε > 0, there exists I > 0 such that dist(ξi ,A) ≤ ε for i ≥ I . It
converges to A topologically if for any open neighborhood4 U of A,
there exists I ′ > 0 such that ξi (i ≥ I ′) ⊆ U .

Remark 2
Topological convergence is stronger than metrical convergence, while
the former is relatively less studied in the control literature. This
stronger notion is especially needed when a system evolves on some
general topological space, or when a metric-independent convergence
result is required.

4An (open) neighborhood of A ⊆M is an open set U ⊆M such that A ⊆ U .
10/22
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Answer to Q1: They are equivalent for a compact set

Proposition 1

Suppose A 6= ∅ is compact. Then an infinite sequence of points
converges metrically to the desired set A ⇐⇒ it converges
topologically to A.

Sketch of Proof.
“ ⇐= ” is obvious.
“ =⇒ ”: Since A 6= ∅ is compact, for any open neighborhood U of A,
there exists an ε-neighborhood5 Uε of A, such that Uε ⊆ U .

Remark 3
Usually, A is an equilibrium point, which is compact. Therefore,
metrical convergence and topological convergence are equivalent.

5An ε-neighborhood Uε of A ⊆M is an open neighborhood of A defined by
Uε := {p ∈M : dist(p,A) < ε}.
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Answer to Q1: Local compactness

What if A orM is not compact? Then we use the one-point
compactification ofM that is vital in subsequent proofs.

To ensure the one-point compactification ofM exists, we need:

Assumption 1

The metric spaceM is locally compact6.

This assumption is satisfied ifM is a smooth manifold or a Euclidean
space Rn for some n ∈ N. Now we have the following theorem.

6The spaceM is locally compact at x ∈M if there is a compact subspace N ⊆M
that contains a neighborhood of x . IfM is locally compact at every point, thenM is
said to be locally compact.
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Answer to Q1: Level value → 0 6=⇒ convergence to the zero-
level set

Theorem 1

Let A := {ξ ∈M : ‖φ(ξ)‖ = 0}, where φ :M→ Rm is a continuous
function. If (ξi )

∞
i=0 ∈M is an infinite sequence of points such that

‖φ(ξi )‖ → 0 as i →∞, then the sequence converges topologically to
the set A ∪ {∞} as i →∞.
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‖φ(ξi )‖ → 0 as i →∞, then the sequence converges topologically to
the set A ∪ {∞} as i →∞.

Sketch of proof.
Consider the problem in the one-point compactification ofM. Namely,
M can be embedded in a compact space N , and ∞ is regarded as a
particular point in N . And then we prove by contradiction.
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the set A ∪ {∞} as i →∞.

Remark 4
Four mutually exclusive possibilities:

1. The sequence converges to A;
2. The sequence converges to ∞;

3. The sequence converges to both A and ∞;

4. The sequence converges neither to A nor ∞.
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Remark 4
Four mutually exclusive possibilities:

1. The sequence converges to A;
2. The sequence converges to ∞;

3. The sequence converges to both A and ∞;

4. The sequence converges neither to A nor ∞.

However, if the set A is compact and a continuous trajectory is
considered, then only the first two cases are possible. 13/22



Answer to Q1: continued

Theorem 2

Let A := {ξ ∈M : ‖φ(ξ)‖ = 0}, where φ :M→ Rm is continuous. If
A is compact, and ξ : R≥0 →M is continuous and ‖φ(ξ(t))‖ → 0 as
t →∞, then ξ(t) converges topologically to the set A or to ∞
exclusively as t →∞.

Example 1

Suppose A is a unit circle (i.e. a compact desired path P). The φ
function is chosen as φ(x , y) = (x2 + y2 − 1)exp (−x), and the vector
field is constructed as before.
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Answer to Q1: Summary

Remark 5

Theorem 1 and 2 give a negative answer to Q1. If A is compact, to
exclude the possibility of trajectories escaping to infinity such that
‖φ(ξi )‖ → 0 implies topological convergence to A, one may retreat to:

1) Prove that trajectories are bounded. e.g., find a Lyapunov-like
function V and a compact set Ωα := {x : V (x) ≤ α}, and prove that
V̇ ≤ 0 in this compact set Ωα.

2) Modify φ(·), if feasible, such that ‖φ(x)‖ tends to a non-zero
constant (possibly infinity) as ‖x‖ tends to infinity.

Regardless of whether the desired set A is compact or not, one could
impose an assumption introduced later.

15/22



Answer to Q2: Convergence characterized by level functions

Lemma 1

Consider two non-negative continuous functions Mi :M→ R≥0,
i = 1, 2. If for any given constant κ > 0, it holds that

inf{M1(p) : M2(p) ≥ κ, p ∈M} > 0, (4)

then there holds limk→∞M1(pk) = 0 =⇒ limk→∞M2(pk) = 0, where
(pk)∞k=1 is an infinite sequence of points inM.

16/22
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∞
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suppose (4) holds. If (ξi )

∞
i=0 is a sequence of points ξi ∈M such that

‖φ(ξi )‖ → 0 as i →∞, then the sequence converges metrically to A.

Remark 6

One can verify that the φ function in Example 1 does not satisfy the
condition in (4) with M1 and M2 defined above, but the condition is
met if the φ function is changed to φ(x , y) = x2 + y2 − 1.
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Answer to Q2: Assumptions

According to the discussions above, we impose the following assumption:

Assumption 2

For any given constant κ > 0, there holds

inf{||e(ξ)|| : ξ ∈ Rn, dist(ξ,P) ≥ κ} > 0,

where e(·) is the path-following error vector.

17/22



Answer to Q2: Refining dichotomy convergence

We will show that if a trajectory of ξ̇(t) = χ(ξ(t)) converges to the
singular set C, then under some conditions, it converges to a point in C.
This result depends on a property of real analytic functions:

Lemma 1 (Łojasiewicz gradient inequality)

Let V : Rn → R be a real analytic function on a neighborhood of
ξ∗ ∈ Rn. Then there are constants c > 0 and µ ∈ [0, 1) such that
‖∇V (ξ)‖ ≥ c |V (ξ)− V (ξ∗)|µ in some neighborhood U of ξ∗.

Theorem 3 (Refined Dichotomy Convergence)

Let χ : Rn → Rn be the guiding vector field for path following defined
before. Suppose φ is real analytic and the singular set C is bounded
(hence compact). If a trajectory ξ(t) of ξ̇(t) = χ(ξ(t)) converges
metrically to the set C, then the trajectory converges to a point in C.

6S. Łojasiewicz, “Sur la géométrie semi-et sous-analytique”, 1993.
18/22
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‖∇V (ξ)‖ ≥ c |V (ξ)− V (ξ∗)|µ in some neighborhood U of ξ∗.

Theorem 3 (Refined Dichotomy Convergence)

Let χ : Rn → Rn be the guiding vector field for path following defined
before. Suppose φ is real analytic and the singular set C is bounded
(hence compact). If a trajectory ξ(t) of ξ̇(t) = χ(ξ(t)) converges
metrically to the set C, then the trajectory converges to a point in C.
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Answer to Q2: Examples

We show two simulation examples where the functions φ are real-analytic
and non-real-analytic, respectively to verify Theorem 3.

Example 2

We choose a real-analytic φ function: φ(x , y) = x3/3− 9, hence
∇φ = (x2, 0)>. Therefore, C is the y-axis, which is unbounded, and P is
the vertical line x = 3. The vector field is χ(x , y) = x2 (−kφ(x , y), 1)>,

and the simulation results are shown below.
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Answer to Q2: Examples

Example 3
We choose a non-real-analytic φ function. Consider a smooth but
non-real-analytic function

b(x) =

{
exp (1/x) if x < 0

0 if x ≥ 0
,

We can construct φ(x , y) = b(x)
(
x3/3− 9

)
.
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Conclusion



Conclusion and Future Work

We study the convergence with respect to a metric or a topology to a
compact or non-compact desired set. The desired set is a zero-level set of
a non-negative continuous level function.

Main results:

• The convergence of the level value to zero does not necessarily imply
the convergence of a continuous trajectory to the compact or
non-compact desired set, while additional conditions or assumptions
are provided to make this implication hold.

• Real analyticity of the level function leads to the refined conclusion
that convergence of a trajectory to a singular set implies
convergence to a point in this set (i.e., limit cycles are precluded).
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Thank you!

Weijia Yao Bohuan Lin Brian D. O. Anderson Ming Cao
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