Distributed Coordinated Path Following Using Guiding Vector Fields

Weijia Yao, Hector Garcia de Marina, Zhiyong Sun, Ming Cao

the Netherlands

the Netherlands

In the Netherlands, when you fly a drone, you need to be careful, because...

Related work

- Single-robot path-following is a classic problem.
- Guiding vector field based algorithms have been widely studied.
- These algorithms achieve high path-following accuracy.

Lawrence, et al., AIAA GNCC, 2007; *Lawrence, et al.*, JGCD, 2008; *Nelson, et al.*, ACC, 2006; *Nelson, et al.*, T-RO, 2007; *Goncalves, et al.*, T-RO, 2010; *Kapitanyuk, el al.*, T-CST, 2017; *Sujit et al.*, CSM, 2014.

Our contribution

A singularity-free guiding vector field that enables distributed multi-robot coordinated motion along general desired paths in *n*-dimensional spaces

We achieve this with rigorous mathematical guarantees.

Equations of guiding vector fields

Mathematics

Desired path \mathcal{P} in 2D

 $\phi(x, y) = 0$ Positive constant $\chi(x, y) = Rot(90) \nabla \phi + (-k \phi \nabla \phi)$ \downarrow Vector Rotation Gradient

field matrix

Example

Desired path \mathcal{P} : Circle $\phi(x, y) = x^2 + y^2 - 1 = 0$

Visualization of guiding vector fields Rot(90) $\nabla \phi + (-k \phi \nabla \phi) = \chi(x, y)$ $\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \chi(x, y)$

Orthogonal

Generalization to *n*-dimension

Given a desired path living in an n-dimensional space, we can similarly derive an n-dimensional guiding vector field:

n-dimensional = Tangential + Orthogonal guiding vector field = component + component

Singularity points

- Singularity point is a point where a vector field becomes zero.
- The may be isolated or connected to form an area.
- They are undesirable!
 - Vehicles can get stuck (no guidance).
 - No global convergence to desired paths.

Singularity points always exist!

Topological (inherent) property

If the desired paths are **closed**, or **self-intersecting**, there are **always** singularity points in the guiding vector field!

Question 1: Can we **remove** singularity points while maintaining the **continuity** of the vector field?

YES!

Solution: "topological surgery"

Cut and lift the desired path to a higherdimensional space

• (cos w, sin w) guiding point

Actual robot motion in 2D

Virtual robot motion in 3D

We have created a *singularity-free* guiding vector field for a *single robot*.

Question 2: How to extend it for multi-robot coordination?

An example of six robots

Objective: robots keep equal distances on a circle

without coordination

with coordination

An example of six robots

The coordination is achieved via **local** communication on **neighboring** robots' **virtual coordinates**.

Arrows of different colors belong to vector fields for different robots.

For clarity, only parts of the vector fields around robots are shown.

Mathematics for coordination

• Distributed coordination via the virtual coordinate w

classic consensus algorithm on the virtual coordinate w

Mathematics for coordination

• Distributed coordination via the virtual coordinate w

$$\begin{bmatrix} \chi_{x} \\ \chi_{y} \\ \chi_{w} \end{bmatrix} + k_{c} \begin{bmatrix} 0 \\ 0 \\ virtual \ control \end{bmatrix} = \mathfrak{X}_{i}$$
guiding vector coordination coordination vector field
$$-\sum_{\substack{neighbors j}} \left[\begin{pmatrix} my \\ virtual \ coordinate \ w_{i} \end{pmatrix} - \frac{desired}{difference \ \Delta_{ij}} \right]$$
Previous example: $\Delta_{ij} = \frac{2\pi}{6}$

time (s)

Mathematics for coordination

• Distributed coordination via the virtual coordinate w

$$\begin{bmatrix} \chi_{x} \\ \chi_{y} \\ \chi_{w} \end{bmatrix} + k_{c} \begin{bmatrix} 0 \\ 0 \\ virtual \ control \end{bmatrix} = \mathfrak{X}_{i}$$
guiding vector field χ coordination term vector field
$$-\sum_{\substack{neighbors j}} \begin{bmatrix} my \\ virtual \ coordinate \ w_{i} \end{bmatrix} - my \ neighbor's \\ virtual \ coordinate \ w_{j} \end{bmatrix} - desired \\ difference \ \Delta_{ij} \end{bmatrix}$$

- The coordination vector field is not a gradient of any potential function.
- Global convergence is guaranteed.

Fixed-wing: Dubins car model and control

$$\dot{x_i} = v \cos \theta$$
$$\dot{y_i} = v \sin \theta$$
$$\dot{z_i} = u_i^z$$
$$\dot{\theta_i} = u_i^{\theta}$$

v is a constant speed θ is the yaw angle u_i^z and u_i^{θ} are control inputs

Control inputs design principle: the fixed-wing orientation becomes aligned with the arrows given by the coordination guiding vector field.

Fixed-wing: Dubins car model and control

$$\dot{x}_{i} = v \cos \theta$$
$$\dot{y}_{i} = v \sin \theta$$
$$\dot{z}_{i} = u_{i}^{z}$$
$$\dot{\theta}_{i} = u_{i}^{\theta}$$

v is a constant speed θ is the yaw angle u_i^z and u_i^{θ} are control inputs

$$u_{i}^{z} = v \mathfrak{X}_{i3} / \sqrt{\mathfrak{X}_{i1}^{2} + \mathfrak{X}_{i2}^{2}}$$
$$u_{i}^{\theta} = \operatorname{Sat}_{a}^{b} (-\overline{\mathfrak{X}_{i}^{p}}^{\top} E \dot{\mathfrak{X}}_{i}^{p} / \|\mathfrak{X}_{i}^{p}\| - k_{\theta} \overline{h_{i}}^{\top} E \overline{\mathfrak{X}_{i}^{p}})$$

Coordinated flight of fixed-wings

Coordinated flight of fixed-wings

All codes are **open source** in the autopilot Paparazzi website.

Other applications

3D volume coverage (with XY, YZ sideview) Coordinated motion on different paths

Coordinated motion on surfaces

Path following with collision avoidance

Without Safety Barrier Certificate (collision happens) With Safety Barrier Certificate (no collision)

Wang, Ames, Egerstedt, T-RO, 2017

Conclusion

- We propose a coordination guiding vector field for multi-robot distributed path following.
- Our approach:
 - Distributed and scalable
 - Enables following of complex paths
 - Low communication & computational cost
 - Singularity-free & has global convergence guarantees
- Experiments with fixed-wing aircraft (saturated Dubins car model)

0.5

Thank you!

Weijia Yao

Hector Garcia de Marina

Zhiyong Sun

Drone Terminator

Feel free to ask questions and contact us!

All codes are available here: wiki.paparazziuav.org/wiki/Module/guidance_vector_field

Appendix

Appendix 1: 3D guiding vector field

The construction can be extended to *n*-dimensions.

Appendix 2: topological surgery

Mathematically, it is simple, relying on a parametric equation

Appendix 3: guiding point vs trajectory point

• (cos w, sin w) guiding point

Actual robot motion in 2D

Virtual robot motion in 3D